A significant amount of the textual content available on the Web is stored in PDF files. These files are typically converted into plain text before they can be processed by information retrieval or text mining systems. Automatic conversion typically introduces various errors, especially if OCR is needed. In this empirical study, we simulate OCR errors and investigate the impact that misspelled words have on retrieval accuracy. In order to quantify such impact, errors were systematically inserted at varying rates in an initially clean IR collection. Our results showed that significant impacts are noticed starting at a 5% error rate. Furthermore, stemming has proven to make systems more robust to errors.
Contradiction Analysis is a relatively new multidisciplinary and complex area with the main goal of identifying contradictory pieces of text. It can be addressed from the perspectives of different research areas such as Natural Language Processing, Opinion Mining, Information Retrieval, and Information Extraction. This paper focuses on the problem of detecting sentiment-based contradictions which occur in the sentences of a given review text. Unlike other types of contradictions, the detection of sentiment-based contradictions can be tackled as a post-processing step in the traditional sentiment analysis task. In this context, we adapted and extended an existing contradiction analysis framework by filtering its results to remove the reviews that are erroneously labeled as contradictory. The filtering method is based on two simple term similarity algorithms. An experimental evaluation on real product reviews has shown proportional improvements of up to 30% in classification accuracy and 26% in the precision of contradiction detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.