Sleep and circadian disruptions are commonly reported by patients with neurodegenerative diseases, suggesting these may be an endophenotype of the disorders. Several mouse models of Huntington’s disease (HD) that recapitulate the disease progression and motor dysfunction of HD also exhibit sleep and circadian rhythm disruption. Of these, the strongest effects are observed in the transgenic models with multiple copies of mutant huntingtin gene. For developing treatments of the human disease, knock-in (KI) models offer advantages of genetic precision of the insertion and control of mutation copy number. Therefore, we assayed locomotor activity and immobility-defined sleep in a new model of HD with an expansion of the KI repeats (Q175). We found evidence for gene dose- and age-dependent circadian disruption in the behavior of the Q175 line. We did not see evidence for loss of cells or disruption of the molecular oscillator in the master pacemaker, the suprachiasmatic nucleus (SCN). The combination of the precise genetic targeting in the Q175 model and the observed sleep and circadian disruptions make it tractable to study the interaction of the underlying pathology of HD and the mechanisms by which the disruptions occur.
Compelling reasons to study the role of sex in the circadian system include the higher rates of sleep disorders in women than in men and evidence that sex steroids modulate circadian control of locomotor activity. To address the issue of sex differences in the circadian system, we examined daily and circadian rhythms in wheel-running activity, electrical activity within the suprachiasmatic nucleus, and PER2::LUC-driven bioluminescence of gonadally-intact adult male and female C57BL/6J mice. We observed greater precision of activity onset in 12-hour light, 12-hour dark cycle for male mice, longer activity duration in 24 hours of constant darkness for female mice, and phase-delayed PER2::LUC bioluminescence rhythm in female pituitary and liver. Next, in order to investigate whether sex differences in behavior are sex chromosome or gonadal sex dependent, we used the 4 core genotypes (FCG) mouse model, in which sex chromosome complement is independent of gonadal phenotype. Gonadal males had more androgen receptor expression in the suprachiasmatic nucleus and behaviorally reduced photic phase shift response compared with gonadal female FCG mice. Removal of circulating gonadal hormones in adults, to test activational vs organizational effects of sex revealed that XX animals have longer activity duration than XY animals regardless of gonadal phenotype. Additionally, we observed that the activational effects of gonadal hormones were more important for regulating activity levels in gonadal male mice than in gonadal female FCG mice. Taken together, sex differences in the circadian rhythms of activity, neuronal physiology, and gene expression were subtle but provide important clues for understanding the pathophysiology of the circadian system.
Key points• The circadian system drives rhythms of behaviour, physiology and gene expression in alignment to a light-dark cycle, and misalignment of the internal clock with the external environment can lead to disease.• We sought to determine whether scheduled exercise could alter rhythmic properties in mice while subjected to the strong entrainment effects of light and whether we could improve diurnal deficits observed in the vasointestinal polypeptide (VIP)-deficient mouse.• Scheduled exercise altered daily rhythms of activity, physiology and gene expression in wild-type and VIP-deficient mice.• Scheduled exercise during the late night improved many of the rhythmic deficits observed in VIP-deficient mice, including changes in gene expression within the suprachiasmatic nucleus, the site of circadian rhythm generation.• The results raise the possibility that scheduled exercise could be a tool to drive and improve daily rhythms in humans to mitigate the negative consequences of circadian misalignment.Abstract The circadian system co-ordinates the temporal patterning of behaviour and many underlying biological processes. In some cases, the regulated outputs of the circadian system, such as activity, may be able to feed back to alter core clock processes. In our studies, we used four wheel-access conditions (no access; free access; early night; and late night) to manipulate the duration and timing of activity while under the influence of a light-dark cycle. In wild-type mice, scheduled wheel access was able to increase ambulatory activity, inducing a level of exercise driven at various phases of the light-dark cycle. Scheduled exercise also manipulated the magnitude and phasing of the circadian-regulated outputs of heart rate and body temperature. At a molecular level, the phasing and amplitude of PER2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN and peripheral tissues of Per2::Luc knockin mice were altered by scheduled exercise. We then tested whether scheduled wheel access could improve deficits observed in vasointestinal polypeptide-deficient mice under the influence of a light-dark cycle. We found that scheduled wheel access during the late night improved many of the behavioural, physiological and molecular deficits previously described in vasointestinal polypeptide-deficient mice. Our results raise the possibility that scheduled exercise could be used as a tool to modulate daily rhythms and, when
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.