One of Costa Rica’s driest areas is the province of Guanacaste, in the Pacific Northwest, with almost no rain during the dry season from November to April. Due to this marked seasonality, the area is covered by dry tropical deciduous forest, considered the most threatened and least known tropical ecosystem in this area. This study analyzes and characterizes the assemblages of aquatic macroinvertebrates in water bodies within the Tempisque basin. Biological water quality was measured using the BMWP′-CR index. Macroinvertebrate assemblages were analyzed using abundance, richness, and functional feeding group approaches (FFG). Partial least square (PLS) analyses were performed, and the relationships between environmental factors and macroinvertebrate assemblages are also discussed. Macroinvertebrate assemblages were dominated numerically by mayflies, caddisflies, flies, and beetles. The BWMP′-CR index showed varying biological water quality, ranging from “very bad” to “excellent,” depending on rainfall and site management. Results suggest that tropical Mesoamerican rivers contradict the “river continuum concept” because predators and scrapers displace shredders in numbers. On the other hand, the study area shows a notable high richness of the Coleoptera genera. The class Rhynchocoela (Nemertea) is reported for the first time in Central America. The results indicate that the dry forest river ecosystem shows staggering biodiversity despite the surrounding agricultural land use, probably because of their older origin concerning tropical rain forests in Central America.
Background. Tropical mountain rivers are strategic sources of water for human development while biological communities are indicators of the status of these ecosystems. However, volcanic basins close to large urban areas are affected by increasing human pressures that threaten the future of these ecosystems and their benefits to society. Goals. This paper analyzes the evolution of the responses of the aquatic macroinvertebrate assemblages in the face of increasing pressures in the Birrís River basin, which is essential for providing food and energy for the Greater Metropolitan Area of Costa Rica. The hypothesis that volcanic headwater communities are highly vulnerable to human impacts was tested. Methods. Composition and structure of aquatic macroinvertebrate assemblages were assessed along main river channels over two years. Results. The spatial variability of assemblages was related to organic pollution and the self-purification capacity of the river. Temporal variability was mainly explained by the intra-annual climate variability (seasonality). Macroinvertebrate assemblages were dominated by Chironomidae (Diptera), Simuliidae (Diptera), and Baetidae (Ephemeroptera) throughout the year. High flows during the rainy season (May to December) reduced density while diversity peaked at the end of that season. Ephemeroptera and Trichoptera reached their maximum abundance during the dry season, while Diptera showed maximum richness at the end of the rainy season. Conclusions. Biological communities showed spatial and temporal adaptations to the main environmental stresses, including high levels of organic pollution. However, the high slope of river channels favors the self-purification processes, which offer an opportunity for the recovery of ecological integrity combined with control of the organic discharges. More information is needed on taxonomy and autoecology of aquatic fauna and flora in these fragile volcanic environments that are strategic for the protection of water resources in the tropics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.