Poly(methyl methacrylate) (PMMA)-based dielectric materials are of prime interest for many electronic and power devices. However, the low dielectric constant and hydrophobic nature of PMMA limit its success in many applications. This work presents an environmentally friendly approach to surfacefunctionalize PMMA, exploring the use of dopamine (DOPA), to develop multifunctional polymers with enhanced dielectric properties. The reaction of dopamine with plasma pre-activated PMMA was carried out in an aqueous medium without using any toxic chemicals. The functionalized PMMA films exhibited enhanced dielectric properties compared to pristine PMMA films. As an example, below 100 Hz, the dielectric constant of functionalized PMMA films increased by 70% compared to pristine PMMA films. Interestingly, functionalization changed the storage modulus and the T g of PMMA. The enhanced dielectric properties of the functionalized PMMA films may originate from the excellent intrinsic properties of DOPA, which was effectively functionalized on the surface of PMMA.
Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.
Multiwalled carbon nanotubes (MWCNTs) were simultaneously fluidized and oxidized with gaseous ozone in a vertical reactor. Two different varieties of MWCNTs were compared to determine the versatility of the treatment and to elucidate the effect of defects on the oxidation behavior of MWCNTs. The extent of oxidation and nature of functional groups introduced on the nanotube surfaces were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Boehm titration, and structural changes were monitored with Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). After only a few minutes of treatment, nongraphitic impurities were removed from the MWCNTs, and significant levels of oxidation (∼8 atom % O) were achieved with very little damage to the nanotube sidewalls. Short O3 exposure resulted in primarily hydroxyl functionalities, whereas longer exposure led to the formation of mainly carboxylic acid groups. Aliphatic defects present in the commercially produced MWCNTs were found to play an important role in the oxidation mechanism. Because of its ability to remove impurities and to evenly oxidize the sidewalls of nanotubes without the use of any solvents, the fluidized O3 reaction developed in this study was found to be an attractive option for industrial-scale MWCNT functionalization.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with aminosilanes via an aqueous deposition route. The size and morphology of siloxane oligomers grafted to the MWCNTs was tuned by varying the silane functionality and concentration and their effect on the properties of a filled epoxy system was investigated. The siloxane structure was found to profoundly affect the thermo-mechanical behavior of composites reinforced with the silanized MWCNTs. Well-defined siloxane brushes increased the epoxy T g by up to 19 °C and significantly altered the network relaxation dynamics, while irregular, siloxane networks grafted to the MWCNTs had little effect. The addition of both types of silanized MWCNTs elicited improvements in the strength of the nanocomposites, but only the well-defined siloxane brushes engendered dramatic improvements in toughness. Because the silanization reaction is simple, rapid, and performed under aqueous conditions, it is also an industrially attractive functionalization route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.