BackgroundExtrahepatic Cholangiocarcinoma (EHCC) is one of the uncommon malignancies in the digestive system which is characterized by a poor prognosis. Aberrations of miRNAs have been shown involved in the progression of this disease. In this study, we evaluated the expression and effects of miR-34a on EHCC.MethodsmiR-34a expression levels were detected in EHCC tissues, adjacent non-tumor tissues, normal bile duct (NBD) specimens of patients and cholangiocarcinoma (CC) cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Relationships between miR-34a with clinical characteristics of EHCC patients were further analyzed. Computational search, functional luciferase assay and western blot were further used to demonstrate the downstream target of miR-34a in CC cells. Immunohistochemistry was carried on to identify the downstream target gene of miR-34a in EHCC patients. Cell morphology, invasion and migration assays were further applied to confirm the anti-carcinogenic effects of miR-34a through the downstream target.ResultsmiR-34a expression was significantly decreased in human EHCC tissues and CC cell lines when compared with the adjacent non-tumor tissues and normal bile duct tissues. miR-34a was found correlated with the migration and invasion in EHCC patients. Smad4 was over-expressed in most of the EHCC patients and was further demonstrated as one of the downstream targets of miR-34a, which was involved in the progression of EHCC. Moreover, activation of miR-34a suppressed invasion and migration through TGF-beta/Smad4 signaling pathway by epithelial-mesenchymal transition (EMT) in vitro.ConclusionsTaken together, our results suggest that miR-34a inhibits invasion and migration by targeting Smad4 to suppress EMT through TGF- beta/Smad signaling pathway in human EHCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1359-x) contains supplementary material, which is available to authorized users.
Abstract. microRNAs (miRNAs) are a class of small non-coding RNAs that post-transcriptionally regulate gene expression. Increasing evidence has shown that the deregulation of miRNAs is linked to cancer. The overexpression of miR-224 has been reported in several human cancers. The aim of the present study was to investigate the function of miR-224 in the pathogenetic process of hepatocellular carcinoma (HCC), and the precise mechanism underlying its function. Both gain-of-function and loss-of function assays were conducted through transfection with miR-224 mimics and miR-224 inhibitors in the HepG2 liver carcinoma cell line. The data revealed that miR-224 exerts a significant role in promoting cell proliferation, migration and invasion. Western blot analysis showed that the phosphorylation levels of AKT positively correlated with endogenous levels of miR-224. In addition, results from a dual luciferase reporter assay showed that the expression of the serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A β isoform (PPP2R1B) is inhibited by miR-224; thus, it appears that PPP2R1B is a candidate target of miR-224 in HCC. These data suggest that miR-224 plays a significant role in HCC, possibly through the activation of the AKT signaling pathway by targeting PPP2R1B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.