A kind of mesoporous 2D Pt nanosheets with unique structural features exhibits a high electrocatalytic activity towards the oxygen reduction reaction (ORR).
An analytical modeling framework coupling carbon corrosion and an agglomerate model is established to predict the performance degradation of the cathode catalyst layer (cCL) during startup–shutdown cycles.
The catalysts performance degradation is a crucial issue in decay of the polymer electrolyte membrane fuel cell (PEMFC). The effect of Nafion content, dispersity of Pt nanoparticles and selected types of carbon support on the degradation of electrochemical surface area (ECSA) and double layer capacitance (DLC) were experimentally discussed by accelerated stress test (AST). The catalyst with 20wt% Nafion content exhibited better catalyst performance. i.e., the less DLC and ECSA degradation during AST. Catalysts with well Pt dispersity showed superior %ECSA (the percentage change of ECSA) retention. The heat-treated catalysts exhibited the lowest ECSA and DLC degradation rate due to the larger Pt particle and high carbon corrosion resistance. Moreover, a multi-order model describing the correlation between ECSA and DLC degradation was proposed, providing a vital reference for quantitatively investigating ECSA and DLC degradation in the catalysts with different catalysts structural parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.