Our results suggest that MMP-9 is a potential prognostic factor for ovarian cancer and could be a novel treatment target in ovarian cancer patients.
Ovarian cancer is a fatal gynecological cancer and a major cause of cancer-related mortality worldwide. The main limitation to a successful treatment for ovarian cancer is the development of drug resistance to combined chemotherapy. Tumor suppressor genes (TSGs) are wild-type alleles of genes which play regulatory roles in diverse cellular activities, and whose loss of function contributes to the development of cancer. It has been demonstrated that TSGs contribute to drug resistance in several types of solid tumors. However, an overview of the contribution of TSGs to drug resistance in ovarian cancer has not previously been reported. In this study, 15 TSGs responding to drug resistance in ovarian cancer were reviewed to determine the relationship of TSGs with ovarian cancer drug resistance. Furthermore, gene/protein-interaction and bio-association analysis were performed to demonstrate the associations of these TSGs and to mine the potential drug resistance-related genes in ovarian cancer. We observed that the 15 TSGs had close interactions with each other, suggesting that they may contribute to drug resistance in ovarian cancer as a group. Five pathways/processes consisting of DNA damage, apoptosis, cell cycle, DNA binding and methylation may be the key ways with which TSGs participate in the regulation of drug resistance. In addition, ubiquitin C (UBC) and six additional TSGs including the adenomatous polyposis coli gene (APC), death associated protein kinase gene (DAPK), pleiomorphic adenoma gene-like 1 (PLAGL1), retinoblastoma susceptibility gene (RB1), a gene encoding an apoptosis-associated speck-like protein (PYCARD/ASC) and tumor protein 63 (TP63), which had close interactions with the 15 TSGs, are potential drug resistance-related genes in ovarian cancer.
Anthraquinones exhibit a unique anticancer activity. Since their discovery, medicinal chemists have made several structural modifications, resulting in the design and synthesis of a large number of novel anthraquinone compounds with different biological activities. In general, anthraquinone compounds have been considered to have anticancer activity mainly through DNA damage, cycle arrest and apoptosis. However, recent studies have shown that novel anthraquinone compounds may also inhibit cancer through paraptosis, autophagy, radiosensitising, overcoming chemoresistance and other methods. This Review article provides an overview of novel anthraquinone compounds that have been developed as anticancer agents in recent years and focuses on their anticancer mechanism.
CCL18 is a chemotactic cytokine involved in the pathogenesis and progression of various disorders, including cancer. Previously, our results showed high levels of CCL18 in the serum of epithelial ovarian carcinoma patients suggesting its potential as a circulating biomarker. In this study, we determined that CCL18 expression was up‐regulated in ovarian carcinoma compared with adjacent tissue and was expressed in carcinoma cells in the tumor and not in normal ovarian epithelial cells by laser capture microdissection coupled with real‐time RT‐PCR. Moreover, correlation analysis showed that the CCL18 level was positively correlated with the metastasis of patients with ovarian cancer. Survival analysis also revealed that an increased level of CCL18 was associated with worse survival time in ovarian cancer patients. Over‐expression of CCL18 led to enhanced migration and invasion of the Skov3 ovarian cancer cell line in vitro and in vivo. Finally, proteomics analysis demonstrated that CCL18‐mediated ovarian cancer invasiveness was strongly correlated with the mTORC2 pathway. These findings suggest that the CCL18 chemokine has an important role in chemokine‐mediated tumor metastasis, and may serve as a potential predictor for poor survival outcomes for ovarian cancer. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Abstract. Radioresistance remains one of the important factors in relapse and metastasis of nasopharyngeal carcinoma. Thus, it is imperative to identify genes involved in radioresistance and explore the underlying biological processes in the development of radioresistance. In this study, we used cDNA microarrays to select differential genes between radioresistant CNE-2R and parental CNE-2 cell lines. One hundred and eighty-three significantly differentially expressed genes (p<0.05) were identified, of which 138 genes were upregulated and 45 genes were downregulated in CNE-2R. We further employed publicly available bioinformatics related software, such as GOEAST and STRING to examine the relationship among differentially expressed genes. The results show that these genes were involved in type I interferon-mediated signaling pathway biological processes; the nodes tended to have high connectivity with the EGFR pathway, IFN-related pathways, NF-κB. The node STAT1 has high connectivity with other nodes in the protein-protein interaction (PPI) networks. Finally, the reliability of microarray data was validated for selected genes by semi-quantitative RT-PCR and Western blotting. The results were consistent with the microarray data. Our study suggests that microarrays combined with gene ontology and protein interaction networks have great value in the identification of genes of radioresistance in nasopharyngeal carcinoma; genes involved in several biological processes and protein interaction networks may be relevant to NPC radioresistance; in particular, the verified genes CCL5, STAT1-α, STAT2 and GSTP1 may become potential biomarkers for predicting NPC response to radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.