Indoor navigation has attracted commercial developers and researchers in the last few decades. The development of localization tools, methods and frameworks enables current communication services and applications to be optimized by incorporating location data. For clinical applications such as workflow analysis, Bluetooth Low Energy (BLE) beacons have been employed to map the positions of individuals in indoor environments. To map locations, certain existing methods use the received signal strength indicator (RSSI). Devices need to be configured to allow for dynamic interference patterns when using the RSSI sensors to monitor indoor positions. In this paper, our objective is to explore an alternative method for monitoring a moving user’s indoor position using BLE sensors in complex indoor building environments. We developed a Convolutional Neural Network (CNN) based positioning model based on the 2D image composed of the received number of signals indicator from both x and y-axes. In this way, like a pixel, we interact with each 10 × 10 matrix holding the spatial information of coordinates and suggest the possible shift of a sensor, adding a sensor and removing a sensor. To develop CNN we adopted a neuro-evolution approach to optimize and create several layers in the network dynamically, through enhanced Particle Swarm Optimization (PSO). For the optimization of CNN, the global best solution obtained by PSO is directly given to the weights of each layer of CNN. In addition, we employed dynamic inertia weights in the PSO, instead of a constant inertia weight, to maintain the CNN layers’ length corresponding to the RSSI signals from BLE sensors. Experiments were conducted in a building environment where thirteen beacon devices had been installed in different locations to record coordinates. For evaluation comparison, we further adopted machine learning and deep learning algorithms for predicting a user’s location in an indoor environment. The experimental results indicate that the proposed optimized CNN-based method shows high accuracy (97.92% with 2.8% error) for tracking a moving user’s locations in a complex building without complex calibration as compared to other recent methods.
Two obstacles lie in the traditional Signal Strength Fingerprint Positioning method. Initially, the algorithm cannot converge quickly and accurately due to massive data generated by large indoor environment. Secondly, it is difficult to determine a specific floor in a building using the received Signal Strength(RSS). This paper proposes a method, which uses convolutional neural network (CNN) to classify the floor and location of Bluetooth RSS as well as magnetic field data to calculate the final coordinates, could apply Fingerprint Positioning into indoor environment with large areas and multiply floors. The method involves converting the collected Bluetooth RSS into the "fingerprint image" required for calculation and establishing the CNN for classification training. Subsequently, the real-time Bluetooth RSS are imported into the CNN to classify the floor and determine the transmitters' location. Additionally, the observer's coordinates are matched using the magnetic field data. Our experiments suggested that the proposed method can classify floors and transmitters' locations with predictable bunds of 0.9667 and 0.9333, respectively. At the same time, the average positioning error is less than 1.2 m, which is 43.32% and 44.67% higher than the traditional Bluetooth and magnetic field fingerprint positioning. The accuracy of dynamic positioning is also within 1.55 meters.
Given the problem that the existing method of station distributing the pseudosatellite system cannot ensure both its coverage and position in a situation of signal occlusion, it proposed a new stationary layout method with an elite strategy for a ground-based pseudosatellite positioning system based on the elite strategy of the nondominant genetic rankings (NSGA-II). The geometrical design of the pseudosatellite system is calculated by visual domain analysis and precision factors for the signal coverage age and base station. To optimize the algorithm, the NSGA-II algorithm is used. An earth pseudosatellite positioning system method of stationary distribution is obtained that simultaneously optimizes signal coverage and positioning accuracy. The algorithm is better distributed and has a certain superintendence compared with the traditional genetic algorithm.
In order to overcome the problems of the traditional algorithm, such as the time-consuming execution of acquisition instructions, low signal tracking accuracy, and low signal capture accuracy, a global satellite positioning receiver acquisition and tracking algorithm based on UWB technology is designed in this study. On the basis of expounding the pulse generation method and working principle in UWB technology, this paper analyzes in detail the characteristics of UWB technology, such as antimultipath, low power consumption, and strong penetration. Then, on the basis of window function filtering, in the process of three-dimensional search of global satellite positioning signal, firstly, the satellite signal entering the GPS software receiver is processed by RF front-end mixing and AD sampling, and then, the signal tracking and navigation message solving are completed according to the relationship between the influence factor and Doppler frequency offset. The experimental results show that the execution time of the acquisition instruction of the proposed algorithm varies between 1129 ms and 1617 ms; the signal tracking accuracy ranges between 0.931 and 0.951, and the signal capture accuracy ranges between 93.3% and 95.6%, which proves that the proposed algorithm has achieved the design expectation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.