The aims of this study were to assess the ability of 16 gait indices to identify gait instability and recurrent fallers in persons with Parkinson’s disease (pwPD), regardless of age and gait speed, and to investigate their correlation with clinical and kinematic variables. The trunk acceleration patterns were acquired during the gait of 55 pwPD and 55 age-and-speed matched healthy subjects using an inertial measurement unit. We calculated the harmonic ratios (HR), percent recurrence, and percent determinism (RQAdet), coefficient of variation, normalized jerk score, and the largest Lyapunov exponent for each participant. A value of ≤1.50 for the HR in the antero-posterior direction discriminated between pwPD at Hoehn and Yahr (HY) stage 3 and healthy subjects with a 67% probability, between pwPD at HY 3 and pwPD at lower HY stages with a 73% probability, and it characterized recurrent fallers with a 77% probability. Additionally, HR in the antero-posterior direction was correlated with pelvic obliquity and rotation. RQAdet in the antero-posterior direction discriminated between pwPD and healthy subjects with 67% probability, regardless of the HY stage, and was correlated with stride duration and cadence. Therefore, HR and RQAdet in the antero-posterior direction can both be used as age- and-speed-independent markers of gait instability.
The aim of this study was to determine which supervised machine learning (ML) algorithm can most accurately classify people with Parkinson’s disease (pwPD) from speed-matched healthy subjects (HS) based on a selected minimum set of IMU-derived gait features. Twenty-two gait features were extrapolated from the trunk acceleration patterns of 81 pwPD and 80 HS, including spatiotemporal, pelvic kinematics, and acceleration-derived gait stability indexes. After a three-level feature selection procedure, seven gait features were considered for implementing five ML algorithms: support vector machine (SVM), artificial neural network, decision trees (DT), random forest (RF), and K-nearest neighbors. Accuracy, precision, recall, and F1 score were calculated. SVM, DT, and RF showed the best classification performances, with prediction accuracy higher than 80% on the test set. The conceptual model of approaching ML that we proposed could reduce the risk of overrepresenting multicollinear gait features in the model, reducing the risk of overfitting in the test performances while fostering the explainability of the results.
The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity through trunk acceleration patterns in subjects with Parkinson’s disease (swPD) and healthy subjects, regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 healthy subjects (HS) were acquired using a lumbar-mounted magneto-inertial measurement unit during their walking. MSE, RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1–6. Differences between swPD and HS were calculated at each τ, and the area under the receiver operating characteristics, optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE, RCMSE, and CIs showed to differentiate swPD from HS. MSE in the anteroposterior direction at τ4 and τ5, and MSE in the ML direction at τ4 showed to characterize the gait disorders of swPD with the best trade-off between positive and negative posttest probabilities and correlated with the motor disability, pelvic kinematics, and stance phase. Using a time series of 2000 data points, a scale factor of 4 or 5 in the MSE procedure can yield the best trade-off in terms of post-test probabilities when compared to other scale factors for detecting gait variability and complexity in swPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.