Successful categorization requires listeners to represent the incoming sensory information, resolve the “blooming, buzzing confusion” inherent to noisy sensory signals, and leverage the accumulated evidence towards making a decision. Despite decades of intense debate, the neural systems underlying speech categorization remain unresolved. Here we assessed the neural representation and categorization of lexical tones by native Mandarin speakers ( N = 31) across a range of acoustic and contextual variabilities (talkers, perceptual saliences, and stimuluscontexts) using functional magnetic imaging (fMRI) and an evidence accumulation model of decision-making. Univariate activation and multivariate pattern analyses reveal that the acoustic-variability-tolerant representations of tone category are observed within the middle portion of the left superior temporal gyrus (STG). Activation patterns in the frontal and parietal regions also contained category-relevant information that was differentially sensitive to various forms of variability. The robustness of neural representations of tone category in a distributed fronto-temporoparietal network is associated with trial-by-trial decision-making parameters. These findings support a hybrid model involving a representational core within the STG that operates dynamically within an extensive frontoparietal network to support the representation and categorization of linguistic pitch patterns.
Human language learning differs significantly across individuals in the process and ultimate attainment. Although decades of research exploring the neural substrates of language learning have identified distinct and overlapping neural networks subserving learning of different components, the neural mechanisms that drive the large interindividual differences are still far from being understood. Here we examine to what extent the neural dynamics of multiple brain networks in men and women across sessions of training contribute to explaining individual differences in learning multiple linguistic components (i.e., vocabulary, morphology, and phrase and sentence structures) of an artificial language in a 7 d training and imaging paradigm with functional MRI. With machine-learning and predictive modeling, neural activation patterns across training sessions were highly predictive of individual learning success profiles derived from the four components. We identified four neural learning networks (i.e., the Perisylvian, frontoparietal, salience, and defaultmode networks) and examined their dynamic contributions to the learning success prediction. Moreover, the robustness of the predictions systematically changes across networks depending on specific training phases and the learning components. We further demonstrate that a subset of network nodes in the inferior frontal, insular, and frontoparietal regions increasingly represent newly acquired language knowledge, while the multivariate connectivity between these representation regions is enhanced during learning for more successful learners. These findings allow us to understand why learners differ and are the first to attribute not only the degree of success but also patterns of language learning across components, to neural fingerprints summarized from multiple neural network dynamics.
Semantic processing (SP) is one of the critical abilities of humans for representing and manipulating conceptual and meaningful information. Neuroimaging studies of SP typically collapse data from many subjects, but its neural organization and behavioral performance vary between individuals. It is not yet understood whether and how the individual variabilities in neural network organizations contribute to the individual differences in SP behaviors. We aim to identify the neural signatures underlying SP variabilities by analyzing functional connectivity (FC) patterns based on a large‐sample Human Connectome Project (HCP) dataset and rigorous predictive modeling. We used a two‐stage predictive modeling approach to build an internally cross‐validated model and to test the model's generalizability with unseen data from different HCP samples and other out‐of‐sample datasets. FC patterns within a putative semantic brain network were significantly predictive of individual SP scores summarized from five SP‐related behavioral tests. This cross‐validated model can be used to predict unseen HCP data. The model generalizability was enhanced in the language task compared with other tasks used during scanning and was better for females than males. The model constructed from the HCP dataset can be partially generalized to two independent cohorts that participated in different semantic tasks. FCs connecting to the Perisylvian language network show the most reliable contributions to predictive modeling and the out‐of‐sample generalization. These findings contribute to our understanding of the neural sources of individual differences in SP, which potentially lay the foundation for personalized education for healthy individuals and intervention for SP and language deficits patients.
In brain imaging, it is necessary to accurately distinguish between white matter, made up of axons and their myelin sheaths, and gray matter, made up of neurons and dendrites. Traditional optical coherence tomography (OCT) utilizes the scattering properties of light from the white and gray matter, however, the accuracy is restricted by the angle between the nerve fibers and the observation plane. In this work, we used polarization-sensitive optical coherence tomography(PSOCT) system to obtain the sample's birefringence information according to phase retardation image and proposed a two-parameter classification model containing reflectivity and birefringence, test the probability of white matter and gray matter using Bayesian detection methods, and adjust the threshold to obtain the best performance. The three-dimensional(3D) volume data were divided into 16 groups on average along the A-line direction. In each group, the white matter was set as 1 and the gray matter was set as 0, thus serving as the mask of the group. By applying multi-masks to 3D data, the position of white matter can be seen accurately. As a result, twice as much white matter was determined by proposed method than conventional method. The scattering and polarization information can be displayed simultaneously by encoding the HSV (Hue, Saturation, Value) model with reflectivity, phase retardation and optical axis orientation respectively. Our proposed two-parameter classification model can be used to distinguish white and gray matter in brain and spinal cord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.