MDFA seems to be more sensitive as compared with WTMM method in differentiation between multifractal properties of the heart rate in healthy subjects and patients with left ventricular systolic dysfunction.
The RR series extracted from human electrocardiogram signal (ECG) is considered as a fractal stochastic process. The manifestation of long-range dependencies is the presence of power laws in scale dependent process characteristics. Exponents of these laws: β -describing power spectrum decay, α -responsible for decay of detrended fluctuations or H related to, so-called, roughness of a signal, are known to differentiate hearts of healthy people from hearts with congestive heart failure. There is a strong expectation that resolution spectrum of exponents, so-called, local exponents in place of global exponents allows to study differences between hearts in details. The arguments are given that local exponents obtained in multifractal analysis by the two methods: wavelet transform modulus maxima (WTMM) and multifractal detrended fluctuation analysis (MDFA), allow to recognize the following four stages of the heart: healthy and young, healthy and advance in years, subjects with left ventricle systolic dysfunction (NYHA I-III class) and characterized by severe congestive heart failure (NYHA III-IV class).
Abstract. The recognition of all main features of a healthy heart rhythm (the so-called sinus rhythm) is still one of the biggest challenges in contemporary cardiology. Recently the interesting physiological phenomenon of heart rate asymmetry has been observed. This phenomenon is related to unbalanced contributions of heart rate decelerations and accelerations to heart rate variability. In this paper we apply methods based on the concept of ordinal pattern to the analysis of electrocardiograms (inter-peak intervals) of healthy subjects in the supine position. This way we observe new regularities of the heart rhythm related to the distribution of ordinal patterns of lengths 3 and 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.