A novel sonochemical method for direct preparation of nanocrystalline antimony sulfoiodide (SbSI) has been established. The SbSI gel was synthesized using elemental Sb, S and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2 W/cm2) at 50 degrees C for 2 h. The products were characterized by using techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and optical diffuse reflection spectroscopy (DRS). The SEM and HRTEM investigations exhibit that the as-prepared samples are made up of large quantity nanowires with diameters of about 10-50 nm and lengths reaching up to several micrometers and single-crystalline in nature.
The presented work was focused on investigating the influence of the (hafnium and zirconium)/molybdenum ratio on the microstructure and properties of Ti20Ta20Nb20(ZrHf)20−xMox (where: x = 0, 5, 10, 15, 20 at.%) high entropy alloys in an as-cast state. The designed chemical composition was chosen due to possible future biomedical applications. Materials were obtained from elemental powders by vacuum arc melting technique. Phase analysis revealed the presence of dual body-centered cubic phases. X-ray diffraction showed the decrease of lattice parameters of both phases with increasing molybdenum concentration up to 10% of molybdenum and further increase of lattice parameters. The presence of two-phase matrix microstructure and hafnium and zirconium precipitates was proved by scanning and transmission electron microscopy observation. Mechanical property measurements revealed decreased micro- and nanohardness and reduced Young’s modulus up to 10% of Mo content, and further increased up to 20% of molybdenum addition. Additionally, corrosion resistance measurements in Ringers’ solution confirmed the high biomedical ability of studied alloys due to the presence of stable oxide layers.
Increasing usage of gold nanoparticles (AuNPs) in different industrial areas inevitably leads to their release into the environment. Thus, living organisms, including plants, may be exposed to a direct contact with nanoparticles (NPs). Despite the growing amount of research on this topic, our knowledge about NPs uptake by plants and their influence on different developmental processes is still insufficient. The first physical barrier for NPs penetration to the plant body is a cell wall which protects cytoplasm from external factors and environmental stresses. The absence of a cell wall may facilitate the internalization of various particles including NPs. Our studies have shown that AuNPs, independently of their surface charge, did not cross the cell wall of Arabidopsis thaliana (L.) roots. However, the research carried out with using light and transmission electron microscope revealed that AuNPs with different surface charge caused diverse changes in the root’s histology and ultrastructure. Therefore, we verified whether this is only the wall which protects cells against particles penetration and for this purpose we used protoplasts culture. It has been shown that plasma membrane (PM) is not a barrier for positively charged (+) AuNPs and negatively charged (−) AuNPs, which passage to the cell.
The presented work aimed to investigate the influence of the hafnium/(zirconium and molybdenum) ratio on the microstructure, microhardness and corrosion resistance of Ti20Ta20Nb20(ZrMo)20−xHfx (where x = 0, 5, 10, 15 and 20 at.%) high entropy alloys in an as-cast state produced from elemental powder and obtained via the vacuum arc melting technique. All studied alloys contained only biocompatible elements and were chosen based on the thermodynamical calculations of phase formation predictions after solidification. Thermodynamical calculations predicted the presence of multi-phase, body-centered cubic phases, which were confirmed using X-ray diffraction and scanning electron microscopy. Segregation of alloying elements was recorded using elemental distribution maps. A decrease in microhardness with an increase in hafnium content in the studied alloys was revealed (512–482 HV1). The electrochemical measurements showed that the studied alloys exhibited a high corrosion resistance in a simulated body fluid environment (breakdown potential 4.60–5.50 V vs. SCE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.