Gender equity remains a major issue facing the field of planetary science, and there is broad interest in addressing gender disparities within space science and related disciplines. Many studies of these topics have been performed by professional planetary scientists who are relatively unfamiliar with research in fields such as gender studies and sociology. As a result, they adopt a normative view of gender as a binary choice of 'male' or 'female,' leaving planetary scientists whose genders do not fit within that model out of such research entirely. Reductive frameworks of gender and an overemphasis on quantification as an indicator of gendered phenomena are harmful to people of marginalized genders, especially those who live at the intersections of multiple axes of marginalization such as race, disability, and socioeconomic status. In order for the planetary science community to best serve its marginalized members as we move into the next decade, a new paradigm must be established. This paper aims to address the future of gender equity in planetary science by recommending better survey practices and institutional policies based on a more profound approach to gender.
The Double Asteroid Redirection Test (DART) is the first planetary defense test mission. It will demonstrate the kinetic impactor technique by intentionally colliding the DART spacecraft with the near-Earth asteroid Dimorphos. The main DART spacecraft is accompanied by the Italian Space Agency Light Italian CubeSat for Imaging of Asteroids (LICIACube). Shape modeling efforts will estimate the volume of Dimorphos and constrain the nature of the impact site. The DART mission uses stereophotoclinometry (SPC) as its primary shape modeling technique. DART is essentially a worst-case scenario for any image-based shape modeling approach because images taken by the camera on board the DART spacecraft, called the Didymos Reconnaissance and Asteroid Camera for Optical navigation (DRACO), possess little stereo and no lighting variation; they simply zoom in on the asteroid. LICIACube images add some stereo, but the images are substantially lower in resolution than the DRACO images. Despite the far-from-optimal imaging conditions, our tests indicate that we can identify the impact site to an accuracy and precision better than 10% the size of the spacecraft core, estimate the volume of Dimorphos to better than 25%, and measure tilts at the impact site over the scale of the spacecraft with an accuracy better than 7°. In short, we will know with excellent accuracy where the DART spacecraft hit, with reasonable knowledge of local tilt, and determine the volume well enough that uncertainties in the density of Dimorphos will be comparable to or dominate the uncertainty in the estimated mass. The tests reported here demonstrate that SPC is a robust technique for shape modeling, even with suboptimal images.
that will, by 2024, land "at a lunar swirl and [make the] first surface magnetic measurement." A surface mission to one of these unique locations would provide key data for answering important cross-cutting questions in planetary science -close-by on our nearest planetary neighbor. Progress toward answering these questions depends on interdisciplinary investigation carried out on the lunar surface. Here we outline the science case for a landed mission to a lunar magnetic anomaly, including illustration of the linkages to the documents that guide NASA's science planning. We also discuss the measurements and instruments that could address the science questions, and describe options for robotic lander and rover missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.