The overall objective of this investigation was to characterize the extracellular matrix deposited by the stromal fibroblasts as a function of time in culture and matrix microstructure. Stromal fibroblasts were seeded onto collagen matrices and cultured for up to 5 weeks. The collagen matrices contained collagen fibrils with an average diameter of 215 +/- 20 nm. When cultured on a collagen film, an average fibril diameter of 62 +/- 39 nm was observed for single layer films with only slight variations with time in culture, and after 1 week of culture between two film layers 67 +/- 47 nm fibrils were observed after 1 week. When the film surface was molded into 1 and 2 microm microgrooves, the initial average fibril diameter of the extracellular matrix was 73 +/- 21 and 73 +/- 31 nm respectively. When cultured on a collagen sponge, an average fibril diameter of 107 +/- 20 nm was initially observed and decreased to 47.5 +/- 17 nm after 1 week in culture. For cells cultured on a collagen sponge, Western blotting showed an increase in myofibroblast phenotype expression with time in culture. Shifts in phenotype were less distinct for cells cultured on collagen films. The microstructure, rather than geometry, of the matrix substrate appeared to influence the newly synthesized extracellular matrix and cell phenotype.
The aim of this study was to test the hypothesis that sternal fixation failure occurs as a result of the repetitive cyclic loading of low loads as opposed to instantaneous loading of high forces which have been studied elsewhere. To achieve this aim, samples of bisected porcine sternum were reapproximated and fixed using wires or plates and subjected to cyclic application of low magnitude forces to simulate breathing. Cortical and cancellous screw-plate fixation systems were compared, and traditional, simple straight wiring was used as a control. A servohydraulic testing system was used to apply low forces (67N±22N,~15 lbs) at low frequency (2 Hz) for a high number of cycles (~50,000) and displacement between the sternal halves was monitored by an extensometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.