We examined the mobilities of nucleolar components that act at various steps of the ribosome biogenesis pathway. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) analyses demonstrate that factors involved in rRNA transcription (upstream-binding factor [UBF]), processing (nucleolin, fibrillarin, and RNase MRP subunits, Rpp29), and ribosome assembly (B23) exchange rapidly between the nucleoplasm and nucleolus. In contrast, the mobilities of ribosomal subunit proteins (S5, L9) are much slower. Selective inhibition of RNA polymerase I transcription does not prevent the exchanges but influences the rates of exchange differentially for different nucleolar components. These findings suggest that the rapid exchange of nucleolar components between the nucleolus and nucleoplasm may represent a new level of regulation for rRNA synthesis. The different dynamic properties of proteins involved in different steps of ribosome biogenesis imply that the nucleolar association of these proteins is due to their specific functional roles rather than simply their specific nucleolar-targeting events.
By delivering the concept of clean hydrogen energy and green catalysis to the biomedical field, engineering of hydrogen-generating nanomaterials for treatment of major diseases holds great promise. Leveraging virtue of versatile abilities of Pd hydride nanomaterials in high/stable hydrogen storage, self-catalytic hydrogenation, near-infrared (NIR) light absorption and photothermal conversion, here we utilize the cubic PdH0.2 nanocrystals for tumour-targeted and photoacoustic imaging (PAI)-guided hydrogenothermal therapy of cancer. The synthesized PdH0.2 nanocrystals have exhibited high intratumoural accumulation capability, clear NIR-controlled hydrogen release behaviours, NIR-enhanced self-catalysis bio-reductivity, high NIR-photothermal effect and PAI performance. With these unique properties of PdH0.2 nanocrystals, synergetic hydrogenothermal therapy with limited systematic toxicity has been achieved by tumour-targeted delivery and PAI-guided NIR-controlled release of bio-reductive hydrogen as well as generation of heat. This hydrogenothermal approach has presented a cancer-selective strategy for synergistic cancer treatment.
Coronavirus, uses the Angiotensin Converting Enzyme-2 Receptor to enter airway cells. Viral endocytosis is mediated by several factors, including clathrin, the adaptor protein-2 complex (AP2) and the adaptor-associated kinase-1 (AAK1). 2 According to a recent report, 3 COVID-19, the disease caused by SARS-CoV-2, is characterized by three clinical patterns: no symptoms, mild to moderate disease, severe pneumonia requiring admission to Intensive Care Unit (ICU) in up to 31% of the patients. 3 Thus far, there is no specific therapy for COVID-19 infection. No benefit of lopinavir-ritonavir treatment resulted in a recent trial. 4 Hydroxychloroquine, currently used in view of its "in vitro" observed effect of reduction of viral replication, seems unsatisfactory. 5 Elevated proinflammatory cytokine/chemokine responses seem associated with respiratory failure. 3 Recently, tocilizumab, an interleukin-6 inhibitor, was reported as effective in patients with severe COVID-19 pneumonia. 6 Baricitinib, another inhibitor of cytokine-release, seems an interesting anti-inflammatory drug. It is a Janus kinase inhibitor (anti-JAK) licensed for the treatment of rheumatoid arthritis (RA) with good efficacy and safety records. 7 Moreover it seems to have anti-viral effects by its affinity for AP2-associated protein AAK1, reducing SARS-CoV-2 endocytosis. 8 On this basis, we assessed the safety of baricitinib therapy combined with lopinavir-ritonavir in moderate COVID-19 pneumonia patients and we evaluated its clinical impact.All consecutive hospitalized patients (March 16th −30th) with moderate COVID-19 pneumonia, older than 18 years, were treated for 2 weeks with baricitinib tablets 4 mg/day added to ritonavir-lopinavir therapy. The last consecutive patients with moderate COVID-19 pneumonia receiving standard of care therapy (lopinavir/ritonavir tablets 250 mg/bid and hydroxychloroquine 400 mg/day/orally for 2 weeks) admitted before the date of the first baricitinib-treated patient served as controls. Antibiotics were scheduled only in the case of suspected bacterial infection.Inclusion criteria were: a. SARS-Co-V2 positivity in the nasal/oral swabs; b. presence of at least 3 of the following symptoms: fever, cough, myalgia, fatigue; c. evidence of radiological pneumonia . After discharge, patients treated with baricitinib were planned to be followed for additional 6 weeks. Exclusion criteria: history of thrombophlebitis (TP), latent tuberculosis infection (QuantiFERON Plus-test positivity, Qiagen, Germany 9 ), pregnancy and lactation.Mild to moderate COVID-19 disease definition: presence of bilateral pneumonia with or without ground glass opacity and in absence of consolidation, not requiring intubation at enrollment; arterial oxygen saturation (SpO2) > 92% at room-air, and ratio arterial oxygen partial pressure/fractional inspired oxygen (PaO2/FiO2) 10 0-30 0 mmHg. Parameters daily accessed were: fever, pulmonary function, Modified Early Warning Score (MEWS), 10 pulse rate, blood pressure. After the initial execution, r...
During mitosis, chromosomes are highly condensed and transcription is silenced globally. One explanation for transcriptional repression is the reduced accessibility of transcription factors. To directly test this hypothesis and to investigate the dynamics of mitotic chromatin, we evaluate the exchange kinetics of several RNA polymerase I transcription factors and nucleosome components on mitotic chromatin in living cells. We demonstrate that these factors rapidly exchange on and off ribosomal DNA clusters and that the kinetics of exchange varies at different phases of mitosis. In addition, the nucleosome component H1c-GFP also shows phase-specific exchange rates with mitotic chromatin. Furthermore, core histone components exchange at detectable levels that are elevated during anaphase and telophase, temporally correlating with H3-K9 acetylation and recruitment of RNA polymerase II before the onset of bulk RNA synthesis at mitotic exit. Our findings indicate that mitotic chromosomes in general and ribosomal genes in particular, although highly condensed, are accessible to transcription factors and chromatin proteins. The phase-specific exchanges of nucleosome components during late mitotic phases are consistent with an emerging model of replication independent core histone replacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.