Mutations in CHD7, encoding ATP-dependent chromodomain-helicase-DNA-binding protein 7, in CHARGE syndrome leads to multiple congenital anomalies including craniofacial malformations, neurological dysfunction and growth delay. Currently, mechanisms underlying the CNS phenotypes remain poorly understood. Here, we show that Chd7 is a direct transcriptional target of oligodendrogenesis-promoting factors Olig2 and Smarca4/Brg1, and is required for proper onset of CNS myelination and remyelination. Genome-occupancy analyses, coupled with transcriptome profiling, reveal that Chd7 interacts with Sox10 and targets the enhancers of key myelinogenic genes, and identify novel Chd7 targets including bone formation regulators Osterix/Sp7 and Creb3l2, which are also critical for oligodendrocyte maturation. Thus, Chd7 coordinates with Sox10 to regulate the initiation of myelinogenesis and acts as a molecular nexus of regulatory networks that account for the development of a seemingly diverse array of lineages including oligodendrocytes and osteoblasts, pointing to the hitherto previously uncharacterized Chd7 functions in white matter pathogenesis in CHARGE syndrome.
The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stemlike state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis. (A) Immunolabeling for GFAP and GS in the cortex of P5 hGFAP-GFP mice. (B) The percentage of indicated cells among hGFAP-GFP+ cells in P5 mouse cortices (n = 4 for GFAP; n = 3 for GS and PDGFRa). (C) Immunolabeling for GFAP, Olig2, and Slc1a3 from P5 hGFAP-GFP mice. (D) Zoom on boxed area in (C). (E) The percentage of Olig2+ and Olig2À cells among hGFAP-GFP+GFAP+ (left) or hGFAP-GFP+Slc1a3+ (right) cells in P5 mouse cortices (n = 3). (F) Immunolabeling of Blbp in the cortices from hGFAP-GFP mice at P3. (G) Expression of PDGFRa in the cortices of P5 hGFAP-GFP mice. (H) Immunolabeling for Ppp1r14b and Olig2 in the cortices of hGFAP-GFP mice at P3. (I) Immunolabeling for Olig2 and Ki67 from P5 hGFAP-GFP mice. (J) (Left) Enlarged images of (I) show cells co-labeled with Ki67 (arrows) and cells without Ki67 (arrowheads). (Right) Percentage of Olig2+ and Olig2À cells among Ki67+ hGFAP-GFP+ double-positive cells is shown (>300 cell counts from 3 cortices).
Summary Malignant gliomas exhibit extensive heterogeneity and poor prognosis. Here we identify mitotic Olig2-expressing cells as tumor-propagating cells in proneural gliomas, elimination of which blocks tumor initiation and progression. Intriguingly, deletion of Olig2 resulted in tumors that grow, albeit at a decelerated rate. Genome occupancy and expression profiling analyses reveal that Olig2 directly activates cell proliferation machinery to promote tumorigenesis. Olig2 deletion causes a tumor phenotypic shift from an oligodendrocyte precursor-correlated proneural toward astroglia-associated gene expression pattern, manifest in down-regulation of PDGF receptor-alpha and reciprocal up-regulation of EGFR. Olig2 deletion further sensitizes glioma cells to EGFR inhibitors and extends animal lifespans. Thus, Olig2-orchestrated receptor signaling drives mitotic growth and regulates glioma phenotypic plasticity. Targeting Olig2 may circumvent resistance to EGFR-targeted drugs.
Summary Long noncoding RNAs (lncRNAs) are emerging as important regulators of cellular functions, but their roles in oligodendrocyte myelination remain undefined. Through de novo transcriptome reconstruction, we establish dynamic expression profiles of lncRNAs at different stages of oligodendrocyte development and uncover a cohort of stage-specific oligodendrocyte-restricted lncRNAs, including a conserved chromatin-associated lncOL1. Co-expression network analyses further define the association of distinct oligodendrocyte-expressing lncRNA clusters with protein-coding genes and predict lncRNA functions in oligodendrocyte myelination. Overexpression of lncOL1 promotes precocious oligodendrocyte differentiation in the developing brain, whereas genetic inactivation of lncOL1 causes defects in CNS myelination and remyelination following injury. Functional analyses illustrate that lncOL1 interacts with Suz12, a component of polycomb repressive complex 2, to promote oligodendrocyte maturation, in part, through Suz12-mediated repression of a differentiation inhibitory network that maintains the precursor state. Together, our findings reveal a key lncRNA epigenetic circuitry through interaction with chromatin-modifying complexes in control of CNS myelination and myelin repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.