Polymer brush-functionalized nanomaterials offer interesting features for the design of gene delivery vectors as their physicochemical and structural properties can be designed independently of the chemistry, size and shape of the nanomaterial core. However, little is known of the parameters regulating the adsorption and infiltration of DNA molecules at the surface of positively charged polymer brushes, despite the importance of such processes for gene delivery. Here we investigate the role of the molecular environment (e.g., pH, type of buffer, concentration) on the interactions between plasmid DNA and positively charged poly(dimethylaminoethyl methacrylate) (PDMAEMA) brushes using a combination of light scattering, electrophoretic light scattering, in situ ellipsometry, and surface plasmon resonance. We show that the conformation of swollen PDMAEMA brushes is modulated by the surrounding buffer and that this impacts strongly on the ability of such brushes and nanomaterials based on these coatings to complex DNA molecules. In turn, the levels of transfection efficiency measured correlate with changes in brush conformation and DNA binding. Therefore, this work demonstrates the importance of molecular design of polymer brushes to control DNA complexation and release in order to optimize the performance of polymer brush-functionalized nanomaterials for gene delivery applications.
Polymer brushes are attractive candidates for the design of gene delivery vectors as they allow the systematic study of the impact of structural (type, size, and shape of nanomaterials core) and physicochemical parameters (cationic monomer chemistry, brush thickness, and grafting density) on transfection efficiency. However, relatively little is known of their interactions of oligonucleotides. To study such interactions, we use surface plasmon resonance and developed a kinetic model of brush binding and infiltration. We identify the striking impact that brush grafting density and thickness have on oligonucleotide kinetics of infiltration, binding affinity, and maximum loading. Surprisingly, double-stranded RNA molecules are found to load at significantly higher levels compared to DNA molecules of identical sequence (apart from uracils/thymines). Furthermore, analysis of the kinetics of adsorption of these oligonucleotides indicates that the stoichiometry of binding (ratio of amine versus phosphate residues) is close to parity for the uptake of 20 bp double-stranded RNA. Finally, nanoparticles were designed to be used as gene transfection vectors and to quantify if the brush grafting density and thickness significantly impact transfection efficiencies in a small interfering RNA knockdown assay. Therefore, this study demonstrates the rational design of polymer brush-based nanoparticle vectors for efficient delivery of oligonucleotides. The model developed will allow to uncover how the refinement of the physicochemical and structural properties of polymer brushes enable the tuning of RNA binding and allow the systematic study of cationic vectors efficiency for RNA delivery.
The facile and controlled fabrication of homogeneously grafted cationic polymers on carbon nanotubes (CNTs) remains poorly investigated, which further hinders the understanding of interactions between functionalized CNTs with different nucleic acids and the rational design of appropriate gene delivery vehicles. Herein, we describe the controlled grafting of cationic poly(2-dimethylaminoethylmethacrylate) brushes on CNTs via surface-initiated atom transfer radical polymerization integrated with mussel-inspired polydopamine chemistry. The binding of nucleic acids with different brush-CNT hybrids discloses the highly architectural-dependent behavior with dense short brush-coated CNTs displaying the highest binding among all the other hybrids, namely, dense long, sparse long, and sparse short brush-coated CNTs. Additionally, different chemistries of the brush coatings were shown to influence the biocompatibility, cellular uptake, and silencing efficiency in vitro. This platform provides great flexibility for the design of polymer brush-CNT hybrids with precise control over their structure–activity relationship for the rational design of nucleic acid delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.