We report a blue dye, coded as R6, which features a polycyclic aromatic hydrocarbon, 9,19-dihydrobenzo[1',10']phenanthro[3',4':4,5]thieno[3,2-b]benzo[1,10]phenanthro[3,4-d]thiophene, coupled with a diarylamine electron donor and 4-(7-ethynylbenzo[c][1,2,5]thiadiazol-4-yl)benzoic acid acceptor. Dye R6 displays a brilliant sapphire color in a sensitized TiO mesoporous film with a Co(II/III) tris(bipyridyl)-based redox electrolyte. The R6 based dye-sensitized solar cell achieves an impressive power conversion efficiency of 12.6% under standard air mass 1.5 global, 100 mW cm, and shows a remarkable photostability.
Immune checkpoint blockade‐related pneumonitis is a rare but potentially life‐threatening adverse effect, but its risk factors are not completely understood. This case‐control study was conducted to identify pneumonitis risk factors in patients treated with anti‐PD1 monoclonal antibodies (mAbs), including all the patients who developed pneumonitis after anti‐PD‐1 mAbs treatment in the Cancer Center of the Chinese People's Liberation Army from September 2015 to September 2017. Two controls per case were matched according to a propensity‐score matching algorithm to account for confounding effects caused by individual baseline variables. Demographic and clinical information was obtained from medical records. In total, 55 cases and 110 controls were included in the study. No association was observed between smoking status or primary lung cancer and risk of pneumonitis. Significant risk factors for pneumonitis related to anti‐PD‐1 mAbs were prior thoracic radiotherapy, prior lung disease and combination therapy with odds ratios of 3.34 (1.51‐7.39), 2.86 (1.45‐5.64) and 2.73 (1.40‐5.31), respectively. The associations remained significant in the multivariable logistic regression model. The risk of pneumonitis induced by anti‐PD‐1 mAbs is associated with prior thoracic radiotherapy, prior lung disease, and combination therapy. Clinicians should monitor these features in patients receiving anti‐PD‐1 therapy to optimize clinical safety and efficacy.
Herein, efficient organic solar cells (OSCs) are realized with the ternary blend of a medium band gap donor (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione)] (PBDB‐T)) with a low band gap acceptor (2,2′‐((2Z,2′Z)‐(((2,5‐difluoro‐1,4‐phenylene)bis(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐6,2‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (HF‐PCIC)) and a near‐infrared acceptor (2,2′‐((2Z,2′Z)‐(((4,4,9,9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (IEICO‐4F)). It is shown that the introduction of IEICO‐4F third component into PBDB‐T:HF‐PCIC blend increases the short‐circuit current density (J sc) of the ternary OSC to 23.46 mA cm−2, with a 44% increment over those of binary devices. The significant current improvement originates from the broadened absorption range and the active layer morphology optimization through the introduction of IEICO‐4F component. Furthermore, the energy loss of the ternary cells (0.59 eV) is much decreased over that of the binary cells (0.80 eV) due to the reduction of both radiative recombination from the absorption below the band gap and nonradiative recombination upon the addition of IEICO‐4F. Therefore, the power conversion efficiency increases dramatically from 8.82% for the binary cells to 11.20% for the ternary cells. This work provides good examples for simultaneously achieving both significant current enhancement and energy loss mitigation in OSCs, which would lead to the further construction of highly efficient ternary OSCs.
Background Evidence for the efficacy of immunotherapy in biliary tract cancer (BTC) is limited and unsatisfactory. Methods Chinese BTC patients receiving a PD-1 inhibitor with chemotherapy, PD-1 inhibitor monotherapy or chemotherapy alone were retrospectively analyzed. The primary outcome was overall survival (OS). The key secondary outcomes were progression-free survival (PFS) and safety. Patients previously treated with any agent targeting T cell costimulation or immune checkpoints were excluded. Results The study included 77 patients (a PD-1 inhibitor plus chemotherapy, n = 38; PD-1 inhibitor monotherapy, n = 20; chemotherapy alone, n = 19). The median OS was 14.9 months with a PD-1 inhibitor plus chemotherapy, significantly longer than the 4.1 months with PD-1 inhibitor monotherapy (HR 0.37, 95% CI 0.17–0.80, P = 0.001) and the 6.0 months with chemotherapy alone (HR 0.63, 95% CI 0.42–0.94, P = 0.011). The median PFS was 5.1 months with a PD-1 inhibitor plus chemotherapy, significantly longer than the 2.2 months with PD-1 inhibitor monotherapy (HR 0.59, 95% CI 0.31–1.10, P = 0.014) and the 2.4 months with chemotherapy alone (HR 0.61, 95% CI 0.45–0.83, P = 0.003). Grade 3 or 4 treatment-related adverse events were similar between the anti-PD-1 combination group and the chemotherapy alone group (34.2% and 36.8%, respectively). Conclusions Anti-PD-1 therapy plus chemotherapy is an effective and tolerable approach for advanced BTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.