Most drug delivery systems have been developed for efficient delivery to tumor sites via targeting and on-demand strategies, but the carriers rarely execute synergistic therapeutic actions. In this work, C8, a cationic, pH-triggered anticancer peptide, is developed by incorporating histidine-mediated pH-sensitivity, amphipathic helix, and amino acid pairing self-assembly design. We designed C8 to function as a pH-responsive nanostructure whose cytotoxicity can be switched on and off by its self-assembly: Noncytotoxic β-sheet fibers at high pH with neutral histidines, and positively charged monomers with membrane lytic activity at low pH. The selective activity of C8, tested for three different cancer cell lines and two noncancerous cell lines, is shown. Based on liposome leakage assays and multiscale computer simulations, its physical mechanisms of pore-forming action and selectivity are proposed, which originate from differences in the lipid composition of the cellular membrane and changes in hydrogen bonding. C8 is then investigated for its potential as a drug carrier. C8 forms a nanocomplex with ellipticine, a nonselective model anticancer drug. It selectively targets cancer cells in a pH-responsive manner, demonstrating enhanced efficacy and selectivity. This study provides a novel powerful strategy for the design and development of multifunctional self-assembling peptides for therapeutic and drug delivery applications.
Gene therapy using RNA interference (RNAi) technology has been explored to treat cancers, by regulating the expression of oncogene. However, even though small interfering RNA (siRNA), which triggers RNAi, may have great therapeutic potential, efforts at using them in vivo have been hampered by the difficulty of effective and safe delivery into cells of interest. In this study, to develop a safe and efficient carrier for in vitro and in vivo siRNA delivery, we designed a peptide library. These peptides are improved variants of a known peptide based siRNA carrier C6. All the modifications improved the transfection efficiency of C6 to some degree. After completing prescreening for activity, several promising candidates were used for further evaluation. Selected peptides C6M3 and C6M6 could form stable complexes with siRNA. These complexes could be greatly uptaken by cells and showed a punctate perinuclear distribution. Moreover, peptide/siRNA complexes achieved high transfection efficiency in vitro without inducing substantial cytotoxicity. We have validated the therapeutic potential of this strategy for cancer treatment by targeting Bcl-2 gene in mouse tumor models, and demonstrated that tumor growth was inhibited. In order to address possible immune side effects of these peptide carriers, biocompatibility study in terms of complement activation and cytokine activation assay were carried out, whereas none of the peptides induced such effects. In conclusion, these results support the potential of these peptides as therapeutic siRNA carrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.