MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target transcripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endogenous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt–Jakob disease, fatal familial insomnia, Gerstmann–Sträussler–Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer’s. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of deregulated miRNAs on prion diseases, are also discussed. Since a cure or effective treatment for prion disorders still pose challenges, miRNA-based therapies emerge as an interesting alternative strategy to tackle such defying medical conditions.
Drought is the most detrimental abiotic stress to sugarcane production. Nevertheless, transcriptomic analyses remain scarce for field-grown plants. Here we performed comparative transcriptional profiling of two contrasting sugarcane genotypes, ‘IACSP97-7065’ (drought-sensitive) and ‘IACSP94-2094’ (drought-tolerant) grown in a drought-prone environment. Physiological parameters and expression profiles were analyzed at 42 (May) and 117 (August) days after the last rainfall. The first sampling was done under mild drought (soil water potential of −60 kPa), while the second one was under severe drought (soil water potential of −75 kPa). Microarray analysis revealed a total of 622 differentially expressed genes in both sugarcane genotypes under mild and severe drought stress, uncovering about 250 exclusive transcripts to ‘IACSP94-2094’ involved in oxidoreductase activity, transcriptional regulation, metabolism of amino acids, and translation. Interestingly, the enhanced antioxidant system of ‘IACSP94-2094’ may protect photosystem II from oxidative damage, which partially ensures stable photochemical activity even after 117 days of water shortage. Moreover, the tolerant genotype shows a more extensive set of responsive transcription factors, promoting the fine-tuning of drought-related molecular pathways. These results help elucidate the intrinsic molecular mechanisms of a drought-tolerant sugarcane genotype to cope with ever-changing environments, including prolonged water deficit, and may be useful for plant breeding programs.
Panagrolaimus superbus nematodes are able to tolerate desiccation by entering into a peculiar state of suspended animation known as anhydrobiosis. When desiccated, anhydrobiotic organisms are also able to tolerate other physical stresses, as high and low levels of temperature and pressure. Here, we decided to investigate the tolerance of desiccated P. superbus to an unprecedented double stress-hypoxia within 99.99% Gallium (Ga) metal cage. The authors observed that regardless of the external relative humidity, desiccated P. superbus tolerated 7 d confined within the metal cage, displaying no negative effects on its survival and population growth rates over 40 d. The results evidence that anhydrobiosis also renders nematodes tolerant to otherwise lethal concentrations of Ga, in an oxygen-poor environment; thus, expanding its polyextremotolerance profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.