Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ~170 million individuals infected and current interferon-based treatment having toxic side-effects and marginal efficacy, more effective antivirals are critically needed1. Although HCV protease inhibitors were just FDA approved, analogous to HIV therapy, optimal HCV therapy likely will require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a promising multi-faceted target for antiviral intervention; however, to date FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-Like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection as silencing or antibody-mediated blocking of NPC1L1 impairs cell-cultured-derived HCV (HCVcc) infection initiation. In addition, the clinically-available FDA-approved NPC1L1 antagonist ezetimibe2,3 potently blocks HCV uptake in vitro via a virion cholesterol-dependent step prior to virion-cell membrane fusion. Importantly, ezetimibe inhibits infection of all major HCV genotypes in vitro, and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor, but also discovered a new antiviral target and potential therapeutic agent.
Hepatitis C virus (HCV) is a liver tropic pathogen that affects ∼170 million people worldwide and causes liver pathologies including fibrosis, cirrhosis, steatosis, iron overload, and hepatocellular carcinoma. As part of a project initially directed at understanding how HCV may disrupt cellular iron homeostasis, we found that HCV alters expression of the iron uptake receptor transferrin receptor 1 (TfR1). After further investigation, we found that TfR1 mediates HCV entry. Specifically, functional studies showed that TfR1 knockdown and antibody blocking inhibit HCV cell culture (HCVcc) infection. Blocking cell surface TfR1 also inhibited HCV pseudoparticle (HCVpp) infection, demonstrating that TfR1 acts at the level of HCV glycoprotein-dependent entry. Likewise, a TfR1 small-molecule inhibitor that causes internalization of surface TfR1 resulted in a decrease in HCVcc and HCVpp infection. In kinetic studies, TfR1 antibody blocking lost its inhibitory activity after anti-CD81 blocking, suggesting that TfR1 acts during HCV entry at a postbinding step after CD81. In contrast, viral spread assays indicated that HCV cellto-cell spread is less dependent on TfR1. Interestingly, silencing of the TfR1 trafficking protein, a TfR-1 specific adaptor protein required for TfR1 internalization, also inhibited HCVcc infection. On the basis of these results, we conclude that TfR1 plays a role in HCV infection at the level of glycoprotein-mediated entry, acts after CD81, and possibly is involved in HCV particle internalization.hepatic iron overload | viral entry factor H epatitis C virus (HCV) infects more than 170 million people worldwide. Approximately 80% of infections persist to chronicity and can lead to liver pathologies including fibrosis, cirrhosis, steatosis, hepatic iron overload, and hepatocellular carcinoma. At this time, however, no vaccine is available to protect against infection, and current IFN-based treatment options, including those that include the HCV protease inhibitors recently approved for genotype 1 patients, are associated with toxic side effects and are only effective in a subset of patients (1, 2). As a result, in the United States, chronic HCV infection is the leading cause of hepatocellular carcinoma and the most common indication for liver transplantation. Importantly, identifying host factors and pathways involved in HCV infection could provide insight into HCVmediated liver disease and possibly lead to the discovery of novel therapeutic targets.Previous studies have reported that a disproportionate number of HCV patients develop hepatic iron overload, suggesting that iron metabolic pathways are deregulated during HCV infection (3-6). Consistent with this hypothesis, changes in the expression of iron metabolic genes have been reported in infected patients and in one HCV replicon cell clone (7,8). Following up on those studies, we initially observed that TfR1 mRNA and protein levels were down-regulated in human hepatoma Huh7 cells in response to HCV infection.TfR1 is the main receptor for cellular ir...
It has been proposed that viral cell-to-cell transmission plays a role in establishing and maintaining chronic infections. Thus, understanding the mechanisms and kinetics of cell-to-cell spread is fundamental to elucidating the dynamics of infection and may provide insight into factors that determine chronicity. Because hepatitis C virus (HCV) spreads from cell to cell and has a chronicity rate of up to 80% in exposed individuals, we examined the dynamics of HCV cell-to-cell spread in vitro and quantified the effect of inhibiting individual host factors. Using a multidisciplinary approach, we performed HCV spread assays and assessed the appropriateness of different stochastic models for describing HCV focus expansion. To evaluate the effect of blocking specific host cell factors on HCV cell-to-cell transmission, assays were performed in the presence of blocking antibodies and/or small-molecule inhibitors targeting different cellular HCV entry factors. In all experiments, HCV-positive cells were identified by immunohistochemical staining and the number of HCV-positive cells per focus was assessed to determine focus size. We found that HCV focus expansion can best be explained by mathematical models assuming focus size-dependent growth. Consistent with previous reports suggesting that some factors impact HCV cell-to-cell spread to different extents, modeling results estimate a hierarchy of efficacies for blocking HCV cell-to-cell spread when targeting different host factors (e.g., CLDN1 > NPC1L1 > TfR1). This approach can be adapted to describe focus expansion dynamics under a variety of experimental conditions as a means to quantify cell-to-cell transmission and assess the impact of cellular factors, viral factors, and antivirals. IMPORTANCEThe ability of viruses to efficiently spread by direct cell-to-cell transmission is thought to play an important role in the establishment and maintenance of viral persistence. As such, elucidating the dynamics of cell-to-cell spread and quantifying the effect of blocking the factors involved has important implications for the design of potent antiviral strategies and controlling viral escape. Mathematical modeling has been widely used to understand HCV infection dynamics and treatment response; however, these models typically assume only cell-free virus infection mechanisms. Here, we used stochastic models describing focus expansion as a means to understand and quantify the dynamics of HCV cell-to-cell spread in vitro and determined the degree to which cellto-cell spread is reduced when individual HCV entry factors are blocked. The results demonstrate the ability of this approach to recapitulate and quantify cell-to-cell transmission, as well as the impact of specific factors and potential antivirals. V iral entry into permissive cells is the first step in establishing infection and is thus a common and often effective target for antiviral therapy. However, after replication and assembly of viral particles in an infected cell, many viruses, including hepatitis C virus...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.