The disaster of loess slope seriously threatened the safety of people and property. Enzyme Induced Calcite Precipitation (EICP) was demonstrated as an environmentally friendly soil improvement method. However, few studies have focused on the improvement effect of EICP on loess slopes. In this study, a series of tests were conducted to investigate the effect of EICP and added either basalt fiber (BF) to the loess or polyvinyl acetate emulsion (PVAC) to the solution on the erosion resistance of loess slopes. The results showed that all of the EICP, EICP-BF, and EICP-PVAC treatments could improve surface strength (SS). The addition of 50 g/L PVAC achieved high SS because the network structure formed by PVAC promoted the affixation of CaCO3. The thickness of the crust layer decreased with the increasing BF content or PVAC concentration. With the increasing number of EICP treatment cycles, the CaCO3 content increased progressively, but the increase rate decreased. For rainfall erosion, the time until erosion occurred was delayed and the stability was improved for loess slopes treated with EICP, EICP-BF, and EICP-PVAC. The high erosion resistance of loess slopes treated with EICP-0.5% BF, EICP-30 g/L PVAC, and EICP-50 g/L PVAC was attributed to the stable spatial structure formed by CaCO3 precipitation and the additional cementation provided by high BF content and PVAC concentration. The addition of 0.5% BF effectively inhibited the development of surface cracks in loess slope after dry–wet cycles. With the increasing number of dry–wet cycles, the accumulative loess loss weight of slopes treated with various methods increased gradually. Among all treatment methods, the number of dry–wet cycles had less effect on EICP-30 g/L PVAC treated loess slopes. This study provided guidance for loess slopes prevention.
The collapsible loess is widely distributed in western China. The special structure and water sensitivity of loess lead to the complex negative skin friction mechanism in pile foundations. Previous studies mainly focused on the negative skin friction of pile foundations and treatment measures, such as casing and coating methods. However, few studies have focused on the influence of the negative skin friction on the settlement and bearing capacity of piles in collapsible loess, especially environmentally friendly methods that can reduce the negative skin friction. In this study, a series of non-immersion and immersion experiments was conducted to investigate the settlement, axial force, and side friction resistance of piles in loess soil under controlled conditions. The results showed that under the non-immersion condition, the settlement of model piles increased with the increasing pile top load. The axial force gradually decreased along the pile length for piles without casing. The axial force attenuation of the casing section of casing piles was almost negligible due to the isolating frictional resistance effect of casing. The settlement of each soil layer increased with the increase in immersion time, and the process was divided into an initial gradual stage, rapid drop stage, and later gradual stage. Both negative and positive skin friction increased with the increasing immersion time and pile top load, and there was a neutral point. The maximum axial force of piles without casing exceeded the peak load at the pile top. The presence of steel casing reduced the failure of pile foundation in collapsible loess. The research results of this paper provide theoretical support for the application of piles in loess areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.