Functionalization of hydrogen‐bonded organic frameworks (HOFs) for specific applications has been a long‐lasting challenge in HOF materials. Here, an efficient way to integrate functional species in the HOF structure through constructing an anionic framework is presented. The obtained HOFs, taking PFC‐33 (PFC = porous materials from FJIRSM,CAS) as an example, integrate a porphyrin photosensitizer as a porous backbone and a commercial biocide as counterions in the structure. The permanent channels and the electrostatic interaction between the framework and the counterions provide PFC‐33 ion‐responsive biocide‐release behavior in various physiological environments, thus exhibiting synergistic photodynamic and chemical antimicrobial efficiency. The unbonded carboxyl groups residing on the HOF surface further allow for manipulating the interfacial interaction between the PFC‐33 and the polymer matrix for membrane fabrication. Therefore, a polyHOF membrane with high stability, desired flexibility, and good permeability is obtained, which demonstrates noticeable bacterial inhibition toward Escherichia coli. This study may shed light on the functionalization of HOF materials for broad application potentials.
Nanopesticides are considered to be a promising alternative strategy for enhancing bioactivity and delaying the development of pathogen resistance to pesticides. Here, a new type of nanosilica fungicide was proposed and demonstrated to control late blight by inducing intracellular peroxidation damage to Phytophthora infestans, the pathogen associated with potato late blight. Results indicated that the structural features of different silica nanoparticles were largely responsible for their antimicrobial activities. Mesoporous silica nanoparticles (MSNs) exhibited the highest antimicrobial activity with a 98.02% inhibition rate of P. infestans, causing oxidative stress responses and cell structure damage in P. infestans. For the first time, MSNs were found to selectively induce spontaneous excess production of intracellular reactive oxygen species in pathogenic cells, including hydroxyl radicals (•OH), superoxide radicals (•O 2 − ), and singlet oxygen ( 1 O 2 ), leading to peroxidation damage in P. infestans. The effectiveness of MSNs was further tested in the pot experiments as well as leaf and tuber infection, and successful control of potato late blight was achieved with high plant compatibility and safety. This work provides new insights into the antimicrobial mechanism of nanosilica and highlights the use of nanoparticles for controlling late blight with green and highly efficient nanofungicides.
Here, TiO2 nanoparticles (NPs), with rod-like morphology, were synthesised under hydrothermal conditions as a green and efficient nanopesticide against bacterial wilt Ralstonia solanacearum. The NPs had a rutile crystal structure...
Bacillus thuringiensis
(Bt) has been regarded as a biopesticide with high efficiency and safety, while it still cannot be popularized and mass-produced because of its high production costs. In the present study, we aimed to develop a cost-effective biopesticide via the secondary use of discharged vegetable wastes as the raw fermentation medium, and the insecticidal activity of Bt strain prepared by this cheap cultivation approach was evaluated. The suitable carbon source, nitrogen source additives and optimal metal ions were screened by the single-factor test, and the optimal combination of additives was determined by orthogonal test and ANOVA analysis. We found that soluble starch (6 g l
−1
), soya bean meal (6 g l
−1
), Al
3+
(0.4 g l
−1
) and Fe
2+
(0.4 g l
−1
) were the optimal exogenous additives, and the optimal fermentation conditions were as follows: pH 7.0, temperature of 35°C and aeration of 80 ml/250 ml. Meanwhile, the bioactivity test results showed that the Bt strain prepared by cheap cultivation still exhibited a good insecticidal effect on
Helicoverpa armigera
compared with the standard LB medium. Collectively, our findings provided a new strategy for vegetable waste utilization with less environmental impact and reduced production cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.