In the current study, the toxicological mechanisms of microcystin-LR and its disadvantageous effects on Daphnia magna were examined. Survival rate, number of newborn, activity of several important enzymes [glutathione S-transferase (GST), lactate dehydrogenase (LDH), phosphatases, and glutathione], accumulated microcystins, and ultrastructural changes in different organs of Daphnia were monitored over the course of 21-day chronic tests. The results indicated that low concentrations of dissolved microcystin had no harmful effect on Daphnia. On the contrary, stimulatory effects were detected. In the presence of toxin at high dosage and for long-term exposure, GST and glutathione levels decreased significantly. The decreased enzyme activity in the antioxidant system probably was caused by detoxification reactions with toxins. And these processes of detoxification at the beginning of chronic tests may enable phosphatases in Daphnia magna to withstand inhibition by the toxins. At the same time, we also found that the LDH activity in test animals increased with exposure to microcystin-LR, indicating that adverse effects occurred in Daphnia. With microcystin given at a higher dosage or for a longer exposure, the effect on Daphnia magna was fatal. In the meantime, microcystin began to accumulate in Daphnia magna, and phosphatase activity started to be inhibited. From the ultrastructure results of cells in D. magna, we obtained new information: the alimentary canal may be the target organ affected by exposure of microcystins to D. magna. The results of the current study also suggested that the oxidative damage and PPI (protein phosphatase inhibition) mechanisms of vertebrates also are adapted to Daphnia.
A Chrysophyceae species, Poterioochromonas sp., was isolated from Microcystis cultures. This species can efficiently prey on Microcystis and can grow faster phagotrophically than autotrophically. The growth of Poterioochromonas sp. was stimulated in the presence of microcystin-LR and microcystin-RR (in concentrations ranging from 0.1 to 4 mg/L). The growth rate of Poterioochromonas was 4-5 times higher than the control, indicating the toxins serve as growth stimuli for this organism. A subculture of toxin-treated cells, however, showed low cellular viability, suggesting that growth enhancement by microcystins was not a normal process. The antioxidant enzymatic activity of Poterioochromonas sp. was screened for toxicology analysis. Glutathione, malondialdehyde, and superoxide dismutase (SOD) content was up-regulated within 8 h of exposure to microcystin-LR (500 microg/L). A high level of SOD activity during exposure to the toxin indicated that SOD was involved in decreasing oxidative stress caused by microcystin-LR. Simultaneously with growth, Poterioochromonas was able to degrade microcystin-LR even, at a toxin concentration of 4 mg/L. This putative degradation mechanism in Poterioochromonas is explored further and discussed in this article. Our findings may shed light on understanding the role of Poterioochromonas in the aquatic ecosystem, in particular, as a grazer of toxic cyanobacteria and a biodegrader for microcystins.
Bacteria play a pivotal role in shaping ecosystems and contributing to elemental cycling and energy flow in the oceans. However, few studies have focused on bacteria at a trans-basin scale, and studies across the subtropical Northwest Pacific Ocean (NWPO), one of the largest biomes on Earth, have been especially lacking. Although the recently developed high-throughput quantitative sequencing methodology can simultaneously provide information on relative abundance, quantitative abundance, and taxonomic affiliations, it has not been thoroughly evaluated. We collected surface seawater samples for high-throughput, quantitative sequencing of 16S rRNA genes on a transect across the subtropical NWPO to elucidate the distribution of bacterial taxa, patterns of their community structure, and the factors that are potentially important regulators of that structure. We used the quantitative and relative abundances of bacterial taxa to test hypotheses related to their ecology. Total 16S rRNA gene copies ranged from 1.86 × 108 to 1.14 × 109 copies L−1. Bacterial communities were distributed in distinct geographical patterns with spatially adjacent stations clustered together. Spatial considerations may be more important determinants of bacterial community structures than measured environmental variables. The quantitative and relative abundances of bacterial communities exhibited similar distribution patterns and potentially important determinants at the whole-community level, but inner-community connections and correlations with variables differed at subgroup levels. This study advanced understanding of the community structure and distribution patterns of marine bacteria as well as some potentially important determinants thereof in a subtropical oligotrophic ocean system. Results highlighted the importance of considering both the quantitative and relative abundances of members of marine bacterial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.