We explored whether two visual mental imagery experiences may be differentiated by electroencephalographic (EEG) and performance interactions with concurrent orienting external attention (OEA) to stimulus location and subsequent visuospatial detection. We measured within-subject (N = 10) event-related potential (ERP) changes during out-of-body imagery (OBI)—vivid imagery of a vertical line outside of the head/body—and within-body imagery (WBI)—vivid imagery of the line within one’s own head. Furthermore, we measured ERP changes and line offset Vernier acuity (hyperacuity) performance concurrent with those imagery, compared to baseline detection without imagery. Relative to OEA baseline, OBI yielded larger N200 and P300, whereas WBI yielded larger P50, P100, N400, and P800. Additionally, hyperacuity dropped significantly when concurrent with both imagery types. Partial least squares analysis combined behavioural performance, ERPs, and/or event-related EEG band power (ERBP). For both imagery types, hyperacuity reduction correlated with opposite frontal and occipital ERP amplitude and polarity changes. Furthermore, ERP modulation and ERBP synchronizations for all EEG frequencies correlated inversely with hyperacuity. Dipole Source Localization Analysis revealed unique generators in the left middle temporal gyrus (WBI) and in the right frontal middle gyrus (OBI), whereas the common generators were in the left precuneus and middle occipital cortex (cuneus). Imagery experiences, we conclude, can be identified by symmetric and asymmetric combined neurophysiological-behavioural patterns in interactions with the width of attentional focus.
We reanalyzed, modeled and simulated Event-Related Potential (ERP) data from 13 healthy children (Mean age = 5.12, Standard Deviation = 0.75) during a computerized visual sustained target detection task. Extending an ERP-based ACT–R (Adaptive Control of Thought–Rational) neurocognitive modeling approach, we tested whether visual sustained selective-set attention in preschool children involves the enhancement of neural response to targets, and it shows key adult-like features (neurofunctional homology). Blinded automatic peaks analysis was conducted on vincentized binned grand ERP averages. Time-course and distribution of scalp activity were detailed through topographic mapping and paths analysis. Reaction times and accuracy were also measured. Adult Magnetic Resonance Imaging-based mapping using ACT–R dipole source modeling and electric-field spiking simulation provided very good fit with the actual ERP data (R2 > 0.70). In most electrodes, between 50 and 400 ms, ERPs concurrent with target presentation were enhanced relative to distractor, without manual response confounds. Triangulation of peak analysis, ACT–R modeling and simulation for the entire ERP epochs up to the moment of manual response (~700 ms, on average) suggested converging evidence of distinct but interacting processes of enhancement and planning for response release/inhibition, respectively. The latter involved functions and structures consistent with adult ERP activity which might correspond to a large-scale network, implicating Dorsal and Ventral Attentional Networks, corticostriatal loops, and subcortical hubs connected to prefrontal cortex top-down working memory executive control. Although preliminary, the present approach suggests novel directions for further tests and falsifiable hypotheses on the origins and development of visual selective attention and their ERP correlates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.