Experience replay enables reinforcement learning agents to memorize and reuse past experiences, just as humans replay memories for the situation at hand. Contemporary off-policy algorithms either replay past experiences uniformly or utilize a rulebased replay strategy, which may be sub-optimal. In this work, we consider learning a replay policy to optimize the cumulative reward. Replay learning is challenging because the replay memory is noisy and large, and the cumulative reward is unstable. To address these issues, we propose a novel experience replay optimization (ERO) framework which alternately updates two policies: the agent policy, and the replay policy. The agent is updated to maximize the cumulative reward based on the replayed data, while the replay policy is updated to provide the agent with the most useful experiences. The conducted experiments on various continuous control tasks demonstrate the effectiveness of ERO, empirically showing promise in experience replay learning to improve the performance of off-policy reinforcement learning algorithms.
Graph data are pervasive in many real-world applications. Recently, increasing attention has been paid on graph neural networks (GNNs), which aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors with stackable network modules. Motivated by the observation that different nodes often require different iterations of aggregation to fully capture the structural information, in this paper, we propose to explicitly sample diverse iterations of aggregation for different nodes to boost the performance of GNNs. It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features. Moreover, it is not straightforward to derive an efficient algorithm since we need to feed the sampled nodes into different number of network layers. To address the above challenges, we propose Policy-GNN, a metapolicy framework that models the sampling procedure and message passing of GNNs into a combined learning process. Specifically, Policy-GNN uses a meta-policy to adaptively determine the number of aggregations for each node. The meta-policy is trained with deep reinforcement learning (RL) by exploiting the feedback from the model. We further introduce parameter sharing and a buffer mechanism to boost the training efficiency. Experimental results on three real-world benchmark datasets suggest that Policy-GNN significantly outperforms the state-of-the-art alternatives, showing the promise in aggregation optimization for GNNs.
We present TODS, an automated Time Series Outlier Detection System for research and industrial applications. TODS is a highly modular system that supports easy pipeline construction. The basic building block of TODS is primitive, which is an implementation of a function with hyperparameters. TODS currently supports 70 primitives, including data processing, time series processing, feature analysis, detection algorithms, and a reinforcement module. Users can freely construct a pipeline using these primitives and perform end- to-end outlier detection with the constructed pipeline. TODS provides a Graphical User Interface (GUI), where users can flexibly design a pipeline with drag-and-drop. Moreover, a data-driven searcher is provided to automatically discover the most suitable pipelines given a dataset. TODS is released under Apache 2.0 license at https://github.com/datamllab/tods. A video is available on YouTube (https://youtu.be/JOtYxTclZgQ)
Manually labeling documents is tedious and expensive, but it is essential for training a traditional text classifier. In recent years, a few dataless text classification techniques have been proposed to address this problem. However, existing works mainly center on single-label classification problems, that is, each document is restricted to belonging to a single category. In this paper, we propose a novel Seed-guided Multi-label Topic Model, named SMTM. With a few seed words relevant to each category, SMTM conducts multi-label classification for a collection of documents without any labeled document. In SMTM, each category is associated with a single category-topic which covers the meaning of the category. To accommodate with multi-labeled documents, we explicitly model the category sparsity in SMTM by using spike and slab prior and weak smoothing prior. That is, without using any threshold tuning, SMTM automatically selects the relevant categories for each document. To incorporate the supervision of the seed words, we propose a seed-guided biased GPU (i.e., generalized Pólya urn) sampling procedure to guide the topic inference of SMTM. Experiments on two public datasets show that SMTM achieves better classification accuracy than state-of-the-art alternatives and even outperforms supervised solutions in some scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.