Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.
With the development of autonomous driving, it is becoming increasingly common for autonomous vehicles (AVs) and humandriven vehicles (HVs) to travel on the same roads. Existing singlevehicle planning algorithms on board struggle to handle sophisticated social interactions in the real world. Decisions made by these methods are difficult to understand for humans, raising the risk of crashes and making them unlikely to be applied in practice. Moreover, vehicle flows produced by open-source traffic simulators suffer from being overly conservative and lacking behavioral diversity. We propose a hierarchical multi-vehicle decision-making and planning framework with several advantages. The framework jointly makes decisions for all vehicles within the flow and reacts promptly to the dynamic environment through a high-frequency planning module. The decision module produces interpretable action sequences that can explicitly communicate self-intent to the surrounding HVs. We also present the cooperation factor and trajectory weight set, bringing diversity to autonomous vehicles in traffic at both the social and individual levels. The superiority of our proposed framework is validated through experiments with multiple scenarios, and the diverse behaviors in the generated vehicle trajectories are demonstrated through closed-loop simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.