The temperature of a physical system is operationally defined in physics as "that quantity which is measured by a thermometer" weakly coupled to, and at equilibrium with the system. This definition is unique only at global equilibrium in view of the zeroth law of thermodynamics: when the system and the thermometer have reached equilibrium, the "thermometer degrees of freedom" can be traced out and the temperature read by the thermometer can be uniquely assigned to the system. Unfortunately, such a procedure cannot be straightforwardly extended to a system out of equilibrium, where local excitations may be spatially inhomogeneous and the zeroth law of thermodynamics does not hold. With the advent of several experimental techniques that attempt to extract a single parameter characterizing the degree of local excitations of a (mesoscopic or nanoscale) system out of equilibrium, this issue is making a strong comeback to the forefront of research. In this paper, we will review the difficulties to define a unique temperature out of equilibrium, the majority of definitions that have been proposed so far, and discuss both their advantages and limitations. We will then examine a variety of experimental techniques developed for measuring the non-equilibrium local temperatures under various conditions. Finally we will discuss the physical implications of the notion of local temperature, and present the practical applications of such a concept in a variety of nanosystems out of equilibrium. Figure 4: (a) The product of the density of states η(E) times the global distribution function ϕ|ρ|ϕ forms a strongly pronounced peak at the expectation value of the global system energyĒ. (b) The logarithm of the local distribution function a|ρ|a (solid line) and the logarithm of a canonical distribution (dashed line) with the same local temperature for a harmonic chain. (a) and (b) are reprinted with permission from [74].
The hierarchical equation of motion method has become one of the most popular numerical methods for describing the dissipative dynamics of open quantum systems linearly coupled to environment. However, its applications to systems with strong electron correlation are largely restrained by the computational cost, which is mainly caused by the high truncation tier L required to accurately characterize the strong correlation effect. In this work, we develop an adiabatic terminator by decoupling the principal dissipation mode with the fastest dissipation rate from the slower ones. The adiabatic terminator leads to substantially enhanced convergence with respect to L as demonstrated by the numerical tests carried out on a single impurity Anderson model. Moreover, the adiabatic terminator alleviates the numerical instability problems in the long-time dissipative dynamics.
Recent technological advancement in scanning tunneling microscope has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments, and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.