The Qinghai–Tibet Plateau has given birth to many indigenous highland plants due to its special geographical location and sensitivity to climate change. Relevantly, the impact of climate change on species distribution has been a hot issue for research in biogeography. Using the maximum entropy (MaxEnt) model, the spatial distribution of habitat suitability for Fritillaria przewalskii Maxim. (FPM) on the Tibetan Plateau was predicted and ranked by combining ecological data and information on its actual current geographical distribution. The potential distribution and trends of FPM on the Tibetan Plateau from 2021 to 2040, 2041 to 2060, 2061 to 2080 and 2081 to 2100 under four current and future climate scenarios (SSP126, SSP245, SSP370 and SSP585) were also predicted. The predictions were found to be highly accurate with AUC values of 0.9645 and 0.9345 for the training and test sets, respectively. A number of conclusions could be drawn from the results. Firstly, the main ecological factors limiting the growth distribution of FPM were the Vegetation types, NPP (net primary production), Soil types, Bio7 (temperature annual range), Pop (population), Slope, GDP, Aspect, Bio1 (annual mean temperature) and Elevation, with a cumulative contribution of 97.6%. Secondly, in the recent past period of 1970–2000, the total suitable distribution area of FPM accounted for 5.55% of the plateau’s total area, which was about 14.11 × 104 km2, concentrated in its eastern and central regions. Thirdly, compared to the previous period, the aforementioned distribution area will, for the period spanning 2021–2040, increase by 14.48%, 16.23%, 16.99%, and 21.53% in the SSP126, SSP245, SSP370, and SSP585 scenarios, respectively. This comes with an overall expansion trend, and the areas predicted to be affected are concentrated in the eastern and central-western parts of the Tibetan Plateau. The other three future periods 2041–2060, 2061–2080, and 2081–2100 also show increases in these total areas to varying degrees. It is noteworthy that in the future periods 2061–2080 and 2081–2100, under the SSP370 and SSP585 scenarios, the area of high suitable distribution decreases or even disappears. Lastly, under the four climate scenarios, the FPM suitable distribution area will shift towards the western part of the Tibetan Plateau.
Background: A method is proposed as follows to establish the ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) fingerprinting and content determination for Fritillaria przewalskii Maxim. (FPM). Materials and Methods: The separation was developed using an Acquity UPLC CSH C18 column (2.1 mm × 100 mm, 1.7 µm). The gradient elution was carried out with acetonitrile solution with 0.1% acetic acid (containing 0.01 mol L−1 ammonium acetate) as the mobile phase, with the flow rate of 0.4 mL min−1, column temperature of 30°C, and injection volume of 2 µL. Fourteen batches of samples were analyzed under the above chromatographic conditions to ascertain the fingerprint of FPM sourced in different areas. A total of 45 common peaks were selected for analysis. Two chromatographic peaks were identified by comparison with the standard compound, and simultaneous content determination of the two compounds was carried out. These two compounds were identified as two alkaloids, peiminine and peimisine. SPSS 25.0 and SIMCA 14.1 were used for cluster analysis (CA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA) on the peak area of the 45 common peaks of FPM. Results: Results from this showed that samples sourced from different regions could be successfully divided into three groups based on their origin. The contents of peiminine and peimisine in different batches of FPM ranged from 57.92 to 76.01 µg/g and 118.12 to 167.39 µg/g. A quick and convenient identification using UPLC fingerprinting combined with PCA was then established to differentiate among FPM samples from different growing regions. Conclusion: This method may prove to be helpful for the quality evaluation and control of FPM and related medicinal plants in the future.
The evolution and current distribution of species on the Qinghai-Tibet Plateau have been significantly impacted by historical occurrences, including the uplift of the plateau and the Quaternary climate upheaval. As a remnant species, the plateau pika (Ochotona curzoniae) is a great model for researching historical events. In this study, 302 samples from 42 sample sites were utilized to analyze the impact of historical events on the evolution and distribution pattern of plateau pikas. The genetic diversity, patterns of differentiation, and historical dynamics of the plateau pika were investigated using molecular markers that included four mitochondrial genes (COI, D-loop, Cytb, and 12S rRNA) and three nuclear genes (GHR, IRBP, and RAG1). The results showed that: (1) The genetic diversity of the plateau pika was high in the Tibetan Plateau (Hd = 0.9997, π = 0.01205), and the plateau pika evolved into five lineages that occupied different geographical areas, with lineage 1 (Group 1) in the south of the Yarlung Zangbo River, lineage 2 (Group 2) in the hinterland of the plateau, lineage 3 (Group 3) in the northeastern part of the plateau, lineage 4 (Group 4) in the Hengduan Mountains, and lineage 5 (Group 5) in the eastern part of the plateau. (2) The gene flow among the five lineages was low, and the differentiation level was high (Nm < 0.25; Fst > 0.25), indicating that the geographical barriers between the five lineages, such as the Yarlung Zangbo River, the Qaidam-Ghuong-Guide Basin, and the Lancang River, effectively promoted the population differentiation of the plateau pika. (3) The plateau pika first spread from the Hengduan Mountains to the entire Qinghai-Tibet Plateau and then conducted small-scale migration and dispersal in several refuges across the plateau in response to climate changes during the glacial and interglacial periods. (4) Except for Group 1 and Group 4, all the other populations exhibited a rapid expansion between 0.06 and 0.01 Mya, but the expansion was considerably delayed or halted by the effects of climate change during the last glacial maximum (0.02 Mya). Overall, the plateau pika on the Qinghai-Tibet Plateau exhibits high genetic diversity, and topographic obstacles, including mountains, valleys, and basins, created by the uplift of the plateau and climatic changes since the Quaternary period have played an important role in the differentiation and historical dynamics of the plateau pika population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.