As a prospective next‐generation energy storage solution, lithium–sulfur batteries excel at their economical attractiveness (sulfur abundance) and electrochemical performance (high energy density, ≈2600 Wh kg−1). However, their application is impracticable without addressing the following vital issues: i) shuttling effect of lithium polysulfides (LPSs), ii) sluggish redox conversion kinetics of LPSs, iii) large volumetric expansion of S after lithiation (≈80%), and iv) uncontrollable Li dendritic formation. Recently, many strategies have been proposed to solve these issues, which have focused on physical/chemical entrapment of LPSs, catalytic promotion of LPSs conversion and directional regulation of Li plating/stripping. Designing/constructing heterostructured materials is one of the promising approaches to potentially resolve all the above challenges with one material. In this review, the recent advances of heterostructures focused on S cathodes, interlayers and Li anodes are reviewed in detail. First, the fundamental chemistry of Li–S batteries and principles of heterostructures reinforced Li–S batteries are described. Second, the applications of heterostructures in Li–S batteries are discussed comprehensively. Finally, a concise outlook on utilizing the intrinsic and extrinsic properties of heterostructures is delivered, with the aim to provide some inspiration for the design and fabrication of advanced Li–S batteries.
Multifunctional MFe2O4 (M = Mn, Co)–MoS2–carbon dot nanohybrid composites were fabricated using a one-pot solvothermal method and applied for efficient Pb(ii) removal.
A prerequisite for exploiting most proposed applications for MoS2 is the availability of water-dispersible functionalized MoS2 nanosheets in large quantities. Here we report one-step synthesis and surface functionalization of MoS2 nanosheets by a facile ionic liquid assisted grinding method in the presence of chitosan. The selected ionic liquid with suitable surface energy could efficiently overcome the van der Waals force between the MoS2 layers. Meanwhile, chitosan molecules bind to the plane of MoS2 sheets non-covalently, which prevents the reassembling of exfoliated MoS2 sheets and facilitates the exfoliation progress. The obtained chitosan functionalized MoS2 nanosheets possess favorable stability and biocompatibility, which renders them as promising and biocompatible near-infrared agents for photothermal ablation of cancer. This contribution provides a facile way for the green, one-step and large-scale synthesis of advanced functional MoS2 materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.