The synthesis of nanocrystals is in the limelight in modern nanotechnology. Biosynthesis of
nanoparticles by plant extracts is currently under exploitation. Not only could silver
nanoparticles ranging from 55 to 80 nm in size be fabricated, but also triangular or spherical
shaped gold nanoparticles could be easily modulated by reacting the novel sundried
biomass of Cinnamomum camphora leaf with aqueous silver or gold precursors at
ambient temperature. The marked difference of shape control between gold and
silver nanoparticles was attributed to the comparative advantage of protective
biomolecules and reductive biomolecules. The polyol components and the water-soluble
heterocyclic components were mainly responsible for the reduction of silver ions or
chloroaurate ions and the stabilization of the nanoparticles, respectively. The
sundried leaf in this work was very suitable for simple synthesis of nanoparticles.
This critical review focuses on recent advances in the bio-inspired synthesis of metal nanomaterials (MNMs) using microorganisms, viruses, plants, proteins and DNA molecules as well as their applications in various fields. Prospects in the design of bio-inspired MNMs for novel applications are also discussed.
Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)(2) (acac = acetylacetonate) and PdBr(2) at 260 °C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co(10)Pd(90) to Co(60)Pd(40)) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO(4) and 2 M HCOOH solution, their catalytic activities followed the trend of Co(50)Pd(50) > Co(60)Pd(40) > Co(10)Pd(90) > Pd. The Co(50)Pd(50) NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/g(Pd). As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/g(Pd). The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)(2) was replaced by Cu(ac)(2) (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO(4) solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.
Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.