Chrysanthemum (Chrysanthemum morifolium Ramat.) is a globally important ornamental plant with great economic, cultural, and symbolic value. However, research on chrysanthemum is challenging due to its complex genetic background. Here, we report a near-complete assembly and annotation for C. morifolium comprising 27 pseudochromosomes (8.15 Gb; scaffold N50 of 303.69 Mb). Comparative and evolutionary analyses reveal a whole-genome triplication (WGT) event shared by Chrysanthemum species approximately 6 million years ago (Mya) and the possible lineage-specific polyploidization of C. morifolium approximately 3 Mya. Multilevel evidence suggests that C. morifolium is likely a segmental allopolyploid. Furthermore, a combination of genomics and transcriptomics approaches demonstrate the C. morifolium genome can be used to identify genes underlying key ornamental traits. Phylogenetic analysis of CmCCD4a traces the flower colour breeding history of cultivated chrysanthemum. Genomic resources generated from this study could help to accelerate chrysanthemum genetic improvement.
Background Chrysanthemum seticuspe has emerged as a model plant species of cultivated chrysanthemums, especially for studies involving diploid and self-compatible pure lines (Gojo-0). Its genome was sequenced and assembled into chromosomes. However, the genome annotation of C. seticuspe still needs to be improved to elucidate the complex regulatory networks in this species. Results In addition to the 74,259 mRNAs annotated in the C. seticuspe genome, we identified 18,265 novel mRNAs, 51,425 novel lncRNAs, 501 novel miRNAs and 22,065 novel siRNAs. Two C-class genes and YABBY family genes were highly expressed in disc florets, while B-class genes were highly expressed in ray florets. A WGCNA was performed to identify the hub lncRNAs and mRNAs in ray floret- and disc floret-specific modules, and CDM19, BBX22, HTH, HSP70 and several lncRNAs were identified. ceRNA and lncNAT networks related to flower development were also constructed, and we found a latent functional lncNAT–mRNA combination, LXLOC_026470 and MIF2. Conclusions The annotations of mRNAs, lncRNAs and small RNAs in the C. seticuspe genome have been improved. The expression profiles of flower development-related genes, ceRNA networks and lncNAT networks were identified, laying a foundation for elucidating the regulatory mechanisms underlying disc floret and ray floret formation.
Decapitation is common in horticulture for altering plant architecture. The decapitation of chrysanthemum plants breaks apical dominance and leads to more flowers on lateral branches, resulting in landscape flowers with good coverage. We performed both third- and second-generation transcriptome sequencing of the second buds of chrysanthemum. This third-generation transcriptome is the first sequenced third-generation transcriptome of chrysanthemum, revealing alternative splicing events, lncRNAs, and transcription factors. Aside from the classic hormones, the expression of jasmonate-related genes changed because of this process. Sugars also played an important role in this process, with upregulated expression of sucrose transport-related and TPS genes. We constructed a model of the initial growth of the second buds after decapitation. Auxin export and sugar influx activated the growth of these buds, while the JA-Ile caused by wounding inhibited the expression of CycD genes from 0 h to 6 h. After wound recovery, cytokinins accumulated in the second buds and might have induced ARR12 expression to upregulate CycD gene expression from 6 h to 48 h, together with sugars. Therefore, jasmonates, cytokinins, sugars, and auxin work together to determine the fate of the buds of plants with short internodes, such as chrysanthemum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.