A novel copper-catalyzed selective semihydrogenation of terminal alkynes using hypophosphorous acid as hydrogen donor took place efficiently to afford the corresponding alkenes in high yields. A broad range of substituted terminal aromatic and aliphatic alkenes, including terminal dienes and enynes bearing internal triple bonds, can be efficiently synthesized by this reaction.
An efficient metal-free aerobic oxidative C-N bond cleavage of tertiary amines has been developed to construct N-heterocycles using molecular oxygen as the sole oxidant with high atom efficiency, in which all of the three alkyl groups in tertiary amines can be utilized and transformed into N-heterocycles.
Copper-catalyzed stereospecific oxidative dehydrocouplings of P(O)–H bonds with amines under air took place efficiently at room temperature to afford the corresponding amidophosphorus compounds in high yields. Mechanistic studies showed that this dehydrocoupling reaction proceeded stereospecifically with inversion of stereochemistry at phosphorus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.