This research investigated the effect of Renolith chemical polymer additive (RCPA) on the properties of expanded polystyrene (ESP) concrete. Renolith chemical additive is a polymer-based product in a liquid form made up of latex and cellulose. Polystyrene panels were collected as a waste materials and grinded into smaller beads. An experimental investigation was carried out on the EPS replacement ranging from 0% to 100% on the M30 (C25/C30) mix design. Engineering properties, such as workability, density, water absorption, compressive strength, split tensile strength, and flexural strength tests, were studied for both the conventional and EPS concrete. The results indicate that workability increases with increasing amount of EPS contents. Water absorption, compressive, tensile, and flexural strength yielded a satisfactory result at 0-50% replacement. The density of the EPS concrete at 0-37.5% replacement revealed similar values to a conventional concrete; and light-weight concrete (1817.5 - 1030 kg⁄m3) was achieved at a 50-100% replacement. Generally, the addition of the RCPA to the concrete mix has caused an improvement in the properties of the EPS concrete. It was concluded that EPS beads can be used as a partial replacement for coarse aggregates in the production of both structural light-weight and dense concrete. The replacement of coarse aggregate with EPS beads showed a positive application as an alternative material for the construction industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.