In this study, activated carbons were prepared from oil palm shells by physicochemical activation. The methodology of experimental design was used to optimize the preparation conditions. The influences of the impregnation ratio (0.6–3.4) and the activation temperature between 601°C and 799°C on the following three responses: activated carbon yield (R/AC-H3PO4), the iodine adsorption (I2/AC-H3PO4), and the methylene blue adsorption (MB/AC-H3PO4) results were investigated using analysis of variance (ANOVA) to identify the significant parameters. Under the experimental conditions investigated, the activation temperature of 770°C and impregnation ratio of 2/1 leading to the R/AC-H3PO4of 52.10%, theI2/AC-H3PO4of 697.86 mg/g, and the MB/AC-H3PO4of 346.25 mg/g were found to be optimum conditions for producing activated carbon with well compromise of desirability. The two factors had both synergetic and antagonistic effects on the three responses studied. The micrographs of activated carbons examined with scanning electron microscopy revealed that the activated carbons were found to be mainly microporous and mesoporous.
The uptake of tartrazine from its aqueous solution by powdered activated carbon prepared from cola nut shells chemically activated with potassium hydroxide (ACK) and phosphoric acid (ACP) has been investigated using kinetics models. Batch isotherm data were analysed with the pseudo-first order, pseudo-second order model as well as the intraparticle diffusion model. For structural elucidation, the materials were characterized using FTIR, XRD and SEM. These analyses revealed that the activated carbons (ACK and ACP) were predominantly mesoporous with several oxygen-containing functional groups dispersed on their surface. The reaction was systematically investigated under various experimental conditions such as contact time, adsorbent dose and pH. For the two adsorbents, the quantity adsorbed of 19.256 mg/g and 18.196 mg/g respectively for ACP and ACK at respective contact times of 5 and 10 min were obtained. The adsorption data were tested with the Langmuir, Freundlich models. Langmuir model was found to best describe the adsorption of tartrate ions with maximum monolayer adsorption capacities of 24.57 and 21.59 mg/g for ACP and ACK, respectively. Results analysis indicated clearly that the pseudo-second order kinetic rate model best fitted the experimental data and therefore was the adsorption controlling mechanism for both adsorbents. Thermodynamic studies revealed that the adsorption process was spontaneous and exothermic for ACP with increased randomness at the solid solution interface, then exothermic but non-spontaneous for ACK. The results show that these activated carbons could be an alternative for more costly adsorbents for the purpose of tartrate ions elimination.
Egusi seed shells (ESS) were used as precursor for the preparation of two activated carbons (ACs) following H 3 PO 4 and ZnCl 2 activation. The effect of factors controlling the preparation of ACs such as chemical activating agent concentration (2-10 M), activation temperature (400˚C-700˚C) and residence time (30-120 min) were optimized using the Box-Behnken Design (BBD). The optimized activated carbons based H 3 PO 4 (ACP) and ZnCl 2 (ACZ) were characterized by N 2 adsorption, elemental analysis, atomic force microscopy (AFM), Boehm titration and Fourier transformed infrared (FTIR) techniques. The specific surface area was found to be 1053.91 and 1009.89 m 2 •g −1 for ACP and ACZ respectively. The adsorbents had similar surface functionalities and were both microporous. The effect of various parameters such as initial pH, concentration, and contact time on the adsorption of nitrate ions on ACP and ACZ in aqueous solution was studied. ACZ demonstrated better adsorption capacity (8.26 mg•g −1) compared to ACP (5.65 mg•g −1) at the same equilibrium time of 20 min. The adsorption process was governed by a "physical interactions" phenomenon for both adsorbents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.