In this work, SrBi4Ti4O15 (SBT) high-temperature piezoelectric ceramics with the addition of different oxides (Gd2O3, CeO2, MnO2 and Cr2O3) were fabricated by a conventional solid-state reaction route. The effects of oxide additives on the phase structures and electrical properties of the SBT ceramics were investigated. Firstly, X-ray diffraction analysis revealed that all these oxides-modified SBT ceramics prepared presented a single SrBi4Ti4O15 phase with orthorhombic symmetry and space group of Bb21m, the change in cell parameters indicated that these oxide additives had diffused into the crystalline lattice of SBT and formed solid solutions with it. The SBT ceramics with the addition of MnO2 achieved a high relative density of up to 97%. The temperature dependence of dielectric constant showed that the addition of Gd2O3 could increase the TC of SBT. At a low frequency of 100 Hz, those dielectric loss peaks appearing around 500 °C were attributed to the space-charge relaxation as an extrinsic dielectric response. The synergetic doping of CeO2 and Cr2O3 could reduce the space-charge-induced dielectric relaxation of SBT. The piezoelectricity measurement and electro-mechanical resonance analysis found that Cr2O3 can significantly enhance both d33 and kp of SBT, and produce a higher phase-angle maximum at resonance. Such an enhanced piezoelectricity was attributed to the further increased orthorhombic distortion after Ti4+ at B-site was substituted by Cr3+. Among these compositions, Sr0.92Gd0.053Bi4Ti4O15 + 0.2 wt% Cr2O3 (SGBT-Cr) presented the best electrical properties including TC = 555 °C, tan δ = 0.4%, kp = 6.35% and d33 = 28 pC/N, as well as a good thermally-stable piezoelectricity that the value of d33 was decreased by only 3.6% after being annealed at 500 °C for 4 h. Such advantages provided this material with potential applications in the high-stability piezoelectric sensors operated below 500 °C.
In this work, Gd/Mn co-doped CaBi4Ti4O15 Aurivillius-type ceramics with the formula of Ca1-xGdxBi4Ti4O15 + xGd/0.2wt%MnCO3 (abbreviated as CBT-xGd/0.2Mn) were prepared by the conventional solid-state reaction route. Firstly, the prepared ceramics were identified as the single CaBi4Ti4O15 phase with orthorhombic symmetry and the change in lattice parameters detected from the Rietveld XRD refinement demonstrated that Gd3+ was successfully substituted for Ca2+ at the A-site. SEM observations further revealed that all samples were composed of the randomly orientated plate-like grains, and the corresponding average grain size gradually decreased with Gd content (x) increasing. For all compositions studied, the frequency independence of conductivity observed above 400 °C showed a nature of ionic conduction behavior, which was predominated by the long-range migration of oxygen vacancies. Based on the correlated barrier hopping (CBH) model, the maximum barrier height WM, the dc conduction activation energy Edc, as well as the hopping conduction activation energy Ep were calculated for the CBT-xGd/0.2Mn ceramics. The composition with x = 0.06 was found to have the highest Edc value of 1.87 eV, as well as the lowest conductivity (1.8 × 10−5 S/m at 600 °C) among these compositions. The electrical modules analysis for this composition further illustrated the degree of interaction between charge carrier β increases, with an increase in temperature from 500 °C to 600 °C, and then a turn to decrease when the temperature exceeded 600 °C. The value of β reached a maximum of 0.967 at 600 °C, indicating that the dielectric relaxation behavior at this temperature was closer to the ideal Debye type.
In this work, a kind of Gd/Cr codoped Bi3TiNbO9 Aurivillius phase ceramic with the formula of Bi2.8Gd0.2TiNbO9 + 0.2 wt% Cr2O3 (abbreviated as BGTN−0.2Cr) was prepared by a conventional solid-state reaction route. Microstructures and electrical conduction behaviors of the ceramic were investigated. XRD and SEM detection found that the BGTN−0.2Cr ceramic was crystallized in a pure Bi3TiNbO9 phase and composed of plate-like grains. A uniform element distribution involving Bi, Gd, Ti, Nb, Cr, and O was identified in the ceramic by EDS. Because of the frequency dependence of the conductivity between 300 and 650 °C, the electrical conduction mechanisms of the BGTN−0.2Cr ceramic were attributed to the jump of the charge carriers. Based on the correlated barrier hopping (CBH) model, the maximum barrier height WM, dc conduction activation energy Ec, and hopping conduction activation energy Ep were calculated with values of 0.63 eV, 1.09 eV, and 0.73 eV, respectively. Impedance spectrum analysis revealed that the contribution of grains to the conductance increased with rise in temperature; at high temperatures, the conductance behavior of grains deviated from the Debye relaxation model more than that of grain boundaries. Calculation of electrical modulus further suggested that the degree of interaction between charge carriers β tended to grow larger with rising temperature. In view of the approximate relaxation activation energy (~1 eV) calculated from Z’’ and M’’ peaks, the dielectric relaxation process of the BGTN−0.2Cr ceramic was suggested to be dominated by the thermally activated motion of oxygen vacancies as defect charge carriers. Finally, a high piezoelectricity of d33 = 18 pC/N as well as a high resistivity of ρdc = 1.52 × 105 Ω cm at 600 °C provided the BGTN−0.2Cr ceramic with promising applications in the piezoelectric sensors with operating temperature above 600 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.