Concrete temperature control during dam construction (e.g., concrete placement and curing) is important for cracking prevention. In this study, a short-term temperature forecast model for mass concrete cooling control is developed using artificial neural networks (ANN). The development workflow for the forecast model consists of data integration, data preprocessing, model construction, and model application. More than 80 000 monitoring samples are collected by the developed intelligent cooling control system in the Baihetan Arch Dam, which is the largest hydropower project in the world under construction. Machine learning algorithms, including ANN, support vector machines, long short-term memory networks, and decision tree structures, are compared in temperature prediction, and the ANN is determined to be the best for the forecast model. Furthermore, an ANN framework with two hidden layers is determined to forecast concrete temperature at intervals of one day. The root mean square error of the forecast precision is 0.15 ı C on average. The application on concrete blocks verifies that the developed ANN-based forecast model can be used for intelligent cooling control during mass concrete construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.