Purpose
The purpose of this paper is to analyze the influence of different parameters on the characteristics of the superconducting electrodynamic suspension (EDS) system.
Design/methodology/approach
The authors used an analytical model based on the dynamic circuit theory to perform the analysis. The authors proposed an inductance criterion to improve the calculation accuracy. They also proposed a three-dimension finite element method (FEM) to verify the validity of the analytical model.
Findings
The levitation force and guiding force increase with the superconducting magnet (SCM) speed and show a saturated trend, while the drag force decreases with the SCM speed. The vibration characteristic is the inherent characteristic of the superconducting EDS. The frequency and amplitude are affected by the gap between adjacent null-flux coils. The levitation force first increases and subsequently decreases with the levitation height. The total levitation force of the SCM increases with the superconducting coil (SC) number, while the average levitation force of an SC decreases with the SC number. The total levitation force nonlinearly increases with the SC number.
Originality/value
The authors introduced an inductance criterion for better understanding and using the analytical model, and they also proposed a 3D FEM method. The 3D FEM method could be extended to simulate the other EDS systems with more complex structures which the numerical model is no longer applicable. The results of the parameter study could deepen people’s understanding of EDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.