We report the effect of N2 addition to C4F8 and C4F8/Ar discharges on plasma etching rates of organosilicate glass (OSG) and etch stop layer materials (Si3N4 and SiC), and the results of surface chemistry studies performed in parallel. N2 addition exhibits different effects in C4F8 and C4F8/Ar plasmas, which may be explained by a higher plasma density, electron temperature, and possibly, the presence of argon metastable species in the C4F8/Ar plasma, all of which serve to dissociate N2 more effectively. When N2 is added to a C4F8/Ar plasma, a reduction of the steady-state fluorocarbon surface layer thickness, one of the key parameters that controls the etching rate and etching selectivity on partially etched samples, is observed. This effect leads to a loss of etching selectivity for C4F8/Ar/N2 discharges. Adding N2 to C4F8 plasmas without Ar enhances the steady-state fluorocarbon layer thickness. X-ray photoelectron spectroscopy analysis shows, in this case, that there is an important change in the stoichiometry of either passively deposited films or the fluorination reaction layers formed on etching samples: A significant amount of nitrogen is incorporated in the fluorocarbon film for deposited films, which implies that CxNy needs to be removed to achieve an etching condition. The incorporation of nitrogen in fluorocarbon films could reduce the etchant supply for Si3N4, or OSG, from the gas phase, especially for C4F8/Ar/N2 plasmas, but not for SiC owing to the differences of the chemical compositions. SiO2 and Si are also studied for comparison materials. The etching behavior of SiO2 is similar to that of OSG and Si3N4, while Si behaves more similar to SiC during fluorocarbon etching. In addition, a comparison of N2 and O2 addition to C4F8 or C4F8/Ar plasma in terms of consequences on etching behavior of the aforementioned materials is presented.
In some applications, such as military or back-up energy applications, lithium-ion batteries can undergo storage for multiple years without use. If the batteries are not properly maintained, the pack voltage can decrease over time due to cell self-discharge, battery management system power requirements, and parasitic loads. However, lithium-ion batteries have a recommended discharge voltage limit corresponding to a nominal 0% state of charge, and if discharged below this limit, they will experience an overdischarge condition which can lead to dissolution of the copper current collector and introduce potential safety and performance issues. This paper investigates the nature of copper dissolution in overdischarged lithium-ion batteries including the relative concentration and chemical state of the copper found in overdischarged batteries through characterization by X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy.
Lithium-ion batteries can help enable the Navy and Marine Corps to meet their energy storage needs; however, safety is of paramount concern. Overdischarge, followed by recharge, is a failure mechanism in lithium-ion batteries that can be associated with long-term storage, poor battery module design, and internal cell defects. Overdischarge is known to cause copper dissolution, SEI layer degradation, and gas generation. By itself, overdischarge does not result in catastrophic thermal runaway; however, if a battery is recharged and used following an overdischarge event, the chances of thermal runaway increase. This paper describes an on-going investigation into the link between depth and duration of overdischarge, quantitative changes to the cell as a result of overdischarge, and performance and safety characteristics in lithium-ion batteries. Through the use of x-ray photoelectron spectroscopy (XPS), we measure copper dissolution in both an overdischarged cell and a healthy cell.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.