Meuwissen and collaborators define a novel genetic cause of pseudo-TORCH syndrome, which resembles the sequelae of congenital infection and represents a novel type I interferonopathy.
BackgroundA genetic cause can be identified in 30% of noncompaction cardiomyopathy patients (NCCM) with clinical features ranging from asymptomatic cardiomyopathy to heart failure with major adverse cardiac events (MACE).Methods and ResultsTo investigate genotype‐phenotype correlations, the genotypes and clinical features of genetic NCCM patients were collected from the literature. We compared age at diagnosis, cardiac features and risk for MACE according to mode of inheritance and molecular effects for defects in the most common sarcomere genes and NCCM subtypes. Geno‐ and phenotypes of 561 NCCM patients from 172 studies showed increased risk in children for congenital heart defects (P<0.001) and MACE (P<0.001). In adult NCCM patients the main causes were single missense mutations in sarcomere genes. Children more frequently had an X‐linked or mitochondrial inherited defect (P=0.001) or chromosomal anomalies (P<0.001). MYH7 was involved in 48% of the sarcomere gene mutations. MYH7 and ACTC1 mutations had lower risk for MACE than MYBPC3 and TTN (P=0.001). The NCCM/dilated cardiomyopathy cardiac phenotype was the most frequent subtype (56%; P=0.022) and was associated with an increased risk for MACE and high risk for left ventricular systolic dysfunction (<0.001). In multivariate binary logistic regression analysis MYBPC3,TTN, arrhythmia ‐, non‐sarcomere non‐arrhythmia cardiomyopathy—and X‐linked genes were genetic predictors for MACE.ConclusionsSarcomere gene mutations were the most common cause in adult patients with lower risk of MACE. Children had multi‐systemic disorders with severe outcome, suggesting that the diagnostic and clinical approaches should be adjusted to age at presentation. The observed genotype‐phenotype correlations endorsed that DNA diagnostics for NCCM is important for clinical management and counseling of patients.
Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw-Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands-Ligue Européene Contre la Maladie d'Alzheimer (LECMA).
We present a neurodegenerative disorder starting in early childhood of two brothers consisting of severe progressive polyneuropathy, severe progressive cerebellar atrophy, microcephaly, mild epilepsy, and intellectual disability. The cause of this rare syndrome was found to be a homozygous mutation (c.1250_1266dup, resulting in a frameshift p.Thr424GlyfsX48) in PNKP, identified by applying homozygosity mapping and whole-genome sequencing. Mutations in PNKP have previously been associated with a syndrome of microcephaly, seizures and developmental delay (MIM 613402), but not with a neurodegenerative disorder. PNKP is a dual-function enzyme with a key role in different pathways of DNA damage repair. DNA repair disorders can result in accelerated cell death, leading to underdevelopment and neurodegeneration. In skin fibroblasts from both affected individuals, we show increased susceptibility to apoptosis under stress conditions and reduced PNKP expression. PNKP is known to interact with DNA repair proteins involved in the onset of polyneuropathy and cerebellar degeneration; therefore, our findings explain this novel phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.