A long-standing hypothesis in ecology and evolution is that trichromatic colour vision (the ability to distinguish red from green) in frugivorous primates has evolved as an adaptation to detect conspicuous (reddish) fruits. This could provide a competitive advantage over dichromatic frugivores which cannot distinguish reddish colours from a background of green foliage. Here, we test whether the origin, distribution and diversity of trichromatic primates is positively associated with the availability of conspicuous palm fruits, i.e. keystone fruit resources for tropical frugivores. We combine global data of colour vision, distribution and phylogenetic data for more than 400 primate species with fruit colour data for more than 1700 palm species, and reveal that species richness of trichromatic primates increases with the proportion of palm species that have conspicuous fruits, especially in subtropical African forests. By contrast, species richness of trichromats in Asia and the Americas is not positively associated with conspicuous palm fruit colours. Macroevolutionary analyses further indicate rapid and synchronous radiations of trichromats and conspicuous palms on the African mainland starting 10 Ma. These results suggest that the distribution and diversification of African trichromatic primates is strongly linked to the relative availability of conspicuous (versus non-conspicuous) palm fruits, and that interactions between primates and palms are related to the coevolutionary dynamics of primate colour vision systems and palm fruit colours.
Studying animal grouping behavior is important for understanding the causes and consequences of sociality and has implications for conservation. Chimpanzee (Pan troglodytes) party size is often assessed by counting individuals or extracted indirectly from camera trap footage or the number of nests. Little is known, however, about consistency across methods for estimating party size. We collected party size data for wild chimpanzees in the Issa valley, western Tanzania, using direct observations, camera traps, and nest counts over six years (2012-2018). We compared mean monthly party size estimates calculated using each method and found that estimates derived from direct observations were weakly positively correlated with those derived from camera traps. Estimates from nest counts were not significantly correlated with either direct observations or camera traps. Overall observed party size was significantly larger than that estimated from both camera traps and nest counts. In both the dry and wet seasons, observed party size was significantly larger than camera trap party size, but not significantly larger than nest party size. Finally, overall party size and wet season party size estimated from camera traps were significantly smaller than nest party size, but this was not the case in the dry season. Our results reveal how data collection methods influence party size estimates in unhabituated chimpanzees and have implications for comparative analysis within and across primate communities. Specifically, future work must consider how estimates were calculated before we can reliably investigate environmental influences on primate behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.