Molecules are ubiquitous in natural phenomena and man-made products, but their use in quantum optical applications has been hampered by incoherent internal vibrations and other phononic interactions with their environment. We have now succeeded in turning an organic molecule into a coherent two-level quantum system by placing it in an optical microcavity. This allows several unprecedented observations such as 99% extinction of a laser beam by a single molecule, saturation with less than 0.5 photon, and nonclassical generation of few-photon super-bunched light. Furthermore, we demonstrate efficient interaction of the molecule-microcavity system with single photons generated by a second molecule in a distant laboratory. Our achievements pave the way for linear and nonlinear quantum photonic circuits based on organic platforms.
Control of light-matter coupling at the quantum level is an enabling technique for many emerging quantum technologies. This tutorial describes recent advances in achieving efficient coupling of light with a single molecule using an optical Fabry-Perot microcavity. We demonstrate that the efficient cavity-molecule coupling converts the molecule to an effective two-level system. In this regime, a single molecule can act as a nearly perfect reflecting mirror and exhibits optical nonlinearity at the ultimate level of single photons.
We recently proposed a flexible quantum secure direct communication protocol [Chin. Phys. Lett. 23 (2006) 3152]. By analyzing its security in the perfect channel from the aspect of quantum information theory, we find that an eavesdropper is capable of stealing all the information without being detected. Two typical attacks are presented to illustrate this point. A solution to this loophole is also suggested and we show its powerfulness against the most general individual attack in the ideal case. We also discuss the security in the imperfect case when there is noise and loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.