[1] A novel approach was used with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to characterize the intense blooms of cyanobacteria (primarily Microcystis aeruginosa) in Taihu Lake, China's third largest freshwater lake. The approach involves first deriving a floating algae index (FAI) based on the mediumresolution (250 and 500 m) MODIS reflectance data at 645, 859, and 1240 nm after correction of the ozone/gaseous absorption and Rayleigh scattering effects and then objectively determining the FAI threshold value (−0.004) to separate the bloom and nonbloom waters. By definition, the term "bloom" or "floating algae" refers to bloom where cyanobacteria form floating scums on the water surface. The 9 year MODIS time series data showed bloom characteristics (annual occurrence frequency, timing, and duration) between 2000 and 2008. Assuming 25% area coverage as a gauge for significance, significant bloom events rarely occurred between 2000 and 2004 for the entire lake (excluding East Bay) or several lake segments (Northwest Lake, Southwest Lake, and Central Lake). In most lake segments, the annual frequency of significant blooms increased from 2000-2004 to 2006-2008, when they started earlier and had a longer duration. The year 2007 showed unique bloom characteristics due to conditions highly favorable for bloom development and proliferation. The results suggest that the long-term bloom patterns are driven by both nutrients and climatic factors. The multiyear series of consistent MODIS FAI data products provide baseline information to monitor the lake's bloom condition, one of the critical water quality indicators, on a weekly basis, as well as to evaluate its future water quality trends.
A massive bloom of the green macroalgae Ulva prolifera (previously known as Enteromorpha prolifera) occurred in June 2008 in the Yellow Sea (YS), resulting in perhaps the largest “green tide” event in history. Using a novel index (Floating Algae Index) and multiresolution remote sensing data from MODIS and Landsat, we show that U. prolifera patches appeared nearly every year between April and July 2000–2009 in the YS and/or East China Sea (ECS), which all originated from the nearshore Subei Bank. A finite volume numerical circulation model, driven by realistic forcing and boundary conditions, confirmed this finding. Analysis of meteorological/environmental data and information related to local aquaculture activities strongly supports the hypothesis that the recurrent U. prolifera in the YS and ECS resulted from aquaculture of the seaweed Porphyra yezoensis (or nori) conducted along the 200 km shoreline of the Subei Bank north of the Changjiang (Yangtze) River mouth. Given the continuous growth in aquaculture efforts in the region, similar macroalgae bloom events, such as the summer 2008 event, are likely to occur in the future, particularly between May and July. This was confirmed by the 2009 bloom event in the same regions and the same period. The profit of the local P. yezoensis aquaculture industry (∼16,000 Ha in 2007) is estimated as U.S. $53 million, yet the cost to manage the impact of the summer 2008 U. prolifera bloom exceeded U.S. $100 million. Therefore, better strategies are required to balance the economic benefit of seaweed aquaculture and the costs of environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.