Microbial populations and communities are heterogeneous, yet capturing their diverse activities has proven challenging at the relevant spatiotemporal scales. Here we present par-seqFISH, a targeted transcriptome-imaging approach that records both gene-expression and spatial context within microscale assemblies at a single-cell and molecule resolution. We apply this approach to the opportunistic bacterial pathogen, Pseudomonas aeruginosa, analyzing ~600,000 individuals across dozens of physiological conditions in planktonic and biofilm cultures. We explore the phenotypic landscape of this bacterium and identify metabolic and virulence related cell-states that emerge dynamically during growth. We chart the spatial context of biofilm-related processes including motility and kin-exclusion mechanisms and identify extensive and highly spatially-resolved metabolic heterogeneity. We find that distinct physiological states can co-exist within the same biofilm, just a few microns away, underscoring the importance of the microenvironment. Together, our results illustrate the complexity of microbial populations and present a new way of studying them at high-resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.