We experimentally demonstrate a superior performance of 2.1-Tb/s·km OFDM signal transmission over 100-km long-reach PONs. While the bandwidth of a 100-km SMF transmission system is limited to 4.3 GHz due to positive chirp, we successfully achieve spectrally-efficient 21-Gb/s signaling by using a cost-effective and low-chirp EAM, and adopting the 128-QAM format and adaptive subcarrier pre-emphasis.
We develop a dynamic multi-band OFDM subcarrier allocation scheme to fully utilize the available bandwidth under the restriction of dispersion- and chirp-related power fading. The experimental results successfully demonstrate an intensity-modulation-direct-detection 34.78-Gbps OFDM signal transmissions over 100-km long-reach (LR) passive-optical networks (PONs) based on a cost-effective 10-GHz EAM and a 10-GHz PIN. Considering 0-100-km transmission bandwidth of a 10-GHz EAM, the narrowest bandwidth is theoretically evaluated to occur at ~40 km, instead of 100 km. Consequently, the performances of 20-100-km PONs are experimentally investigated, and at least 33-Gbps capacity is achieved to support LR-PONs of all possible 20-100-km radii.
In this investigation, a 71.3 to 148.4 Mbit s−1 white phosphor-LED visible light communication (VLC) system is proposed and demonstrated under the practical transmission length of 140 to 210 cm. Here, a commercial white-light LED lamp with five cascaded phosphor-LED chips is utilized for illumination and communication simultaneously. In the measurement, we utilize the optical orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with bit-loading algorithm and propose an optimal bias-tee circuit design to improve the modulation bandwidth from 1 MHz to 27 MHz. Moreover, a blue optical filter is not used on the client side. Finally, to realize and demonstrate the real-time transmission performance in the proposed LED VLC system, a commercial OFDM-based digital signal processor (DSP) chip is utilized on the LED lighting side and client side, respectively. Hence, the proposed real-time half-duplex VLC transmission could achieve the 70 Mbit s−1 downstream and upstream data throughputs, under a practical transmission length of 200 cm.
We develop a novel subcarrier-to-subcarrier intermixing interference (SSII) cancellation technique to estimate and eliminate SSII. For the first time, the SSII cancellation technique is experimentally demonstrated in an electro-absorption modulator- (EAM-) based intensity-modulation-direct-detection (IMDD) multi-band OFDM transmission system. Since the characteristics of SSII are seriously affected by the chirp parameter, a simple constant chirp model, we found, cannot effectively remove the SSII. Therefore, assuming that the chirp parameter linearly depends on the optical power, a novel dynamic chirp model is developed to obtain better estimation and cancellation of SSII. Compared with 23.6% SSII cancellation by the constant chirp model, our experimental results show that incorporating the dynamic chirp model into the SSII cancellation technique can achieve up to 74.4% SSII cancellation and 2.8-dB sensitivity improvement in a 32.25-Gbps OFDM system over 100-km uncompensated standard single-mode fiber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.