Epitaxial p-type transparent conducting oxide (TCO) Cr 2 O 3 :Mg was grown by electron-beam evaporation in a molecular beam epitaxy system on c-plane sapphire. The influence of Mg dopants and the oxygen partial pressure were investigated by thermoelectric and electrical measurements. The conduction mechanism is analyzed using the small-polaron hopping model, and hopping activation energies have been determined, which vary with doping concentration in the range of 210-300 ± 5 meV. Films with better conductivity were obtained by postannealing. The effect of postannealing is discussed in terms of a crystallographic reordering of the Mg dopant. The highest Seebeck mobilities obtained from thermoelectric measurements are of the order of 10 −4 cm 2 V −1 s −1 . We investigate the fundamental properties of a Mg dopant in a high crystalline quality epitaxial film of a binary oxide, helping us understand the role of short range crystallographic order in a p-type TCO in detail.
Molybdenum ditelluride (MoTe 2 ) is a transition metal dichalcogenide (TMD) which has two phases stable under ambient conditions, a semiconducting (2H) and semimetallic (1T′) phase. Despite a host of interesting properties and potential applications, MoTe 2 is one of the less-studied TMDs, perhaps due its relatively low abundance in nature or challenges associated with its synthesis, such as the toxicity of most precursors. In this report, we describe the fabrication of thin films of phase-pure 1T′ MoTe 2 using predeposited molybdenum and electrodeposited tellurium layers, at the relatively low temperature of 450 °C. This method allows control over film geometry and over the tellurium concentration during the conversion. The MoTe 2 films are characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and electron microscopies. When applied as a catalyst for the hydrogen evolution reaction, the films display promising initial results. The MoTe 2 films have a Tafel slope of below 70 mV dec −1 and compare favorably with other MoTe 2 catalysts reported in the literature, especially considering the inherently scalable fabrication method. The variation in electrocatalytic behavior with thickness and morphology of the films is also investigated.
Screening for potential new materials with experimental and theoretical methods has led to the discovery of many promising candidate materials for p-type transparent conducting oxides. It is difficult to reliably assess a good p-type transparent conducting oxide (TCO) from limited information available at an early experimental stage. In this paper we discuss the influence of sample thickness on simple transmission measurements and how the sample thickness can skew the commonly used figure of merit of TCOs and their estimated band gap. We discuss this using copper-deficient CuCrO2 as an example, as it was already shown to be a good p-type TCO grown at low temperatures. We outline a modified figure of merit reducing thickness-dependent errors, as well as how modern ab initio screening methods can be used to augment experimental methods to assess new materials for potential applications as p-type TCOs, p-channel transparent thin film transistors, and selective contacts in solar cells.
The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particular, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. While this production method is ideal for fundamental studies, it is very resource intensive therefore rendering this process unsuitable for large scale applications.In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, suitable for a range of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 ˚C, significantly below the typical temperatures used in the CVT synthesis methods.To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.