Nelumbo nucifera Gaertn. has been used as an important ingredient for traditional medicines since ancient times, especially in Asian countries. Nowadays, many new or unknown phytochemical compounds from N. nucifera are still being discovered. Most of the current research about pharmacological activity focus on nuciferine, many other alkaloids, phenolic compounds, etc. However, there is no current review emphasizing on flavonoids, which is one of the potent secondary metabolites of this species and its pharmacological activities. Therefore, following a taxonomic description, we aim to illustrate and update the diversity of flavonoid phytochemical compounds from N. nucifera, the comparative analysis of flavonoid compositions and contents in various organs. The uses of this species in traditional medicine and the main pharmacological activities such as antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, anti-angiogenic and anti-cancer activities are also illustrated in this works.
It has been suggested that agmatine (decarboxylated arginine) is an endogenous clonidine-displacing substance (CDS) which recognizes alpha 2-adrenoceptor and non-adrenoceptor, imidazoline binding sites. We have examined the effect of agmatine at alpha 2-adrenoceptor binding sites and pre- and postjunctional alpha 2-adrenoceptors. Agmatine produced a concentration-dependent inhibition of 1 nmol/l 3H-clonidine binding to both rat (pKi-5.10 +/- 0.05) and bovine (pKi-4.77 +/- 0.38) cerebral cortex membranes. However, agmatine (0.1-100 microM) failed to activate pre-junctional alpha 2-adrenoceptors regulating transmitter release in the guinea-pig isolated ileum and rat isolated vas deferens, nor did it activate postjunctional alpha 2-adrenoceptors of the porcine isolated palmar lateral vein which mediate contraction or inhibition of forskolin-stimulated cyclic AMP formation. High concentrations of agmatine (10-30-fold the pKi at alpha 2-adrenoceptor binding sites) failed to influence alpha 2-adrenoceptor activation by either clonidine or UK-14304 (5-bromo-6-[2-imidazolin-2-ylamino]-quinoxaline bitartrate) in any of the peripheral preparations examined. Moreover, even in a preparation where an interaction with alpha 2-adrenoceptor binding sites on cell membranes can be demonstrated, the rat cerebral cortex, agmatine failed to inhibit forskolin-stimulated cyclic AMP in the intact tissue or affect the inhibition produced by the selective alpha 2-adrenoceptor agonist UK-14304. Agmatine was also devoid of agonist activity in two preparations, the rat isolated thoracic aorta and the rat isolated gastric fundus, in which CDS has been reported to produce non-adrenoceptor effects. Thus, we have confirmed that agmatine recognizes alpha 2-adrenoceptor binding sites and, therefore, is a CDS.(ABSTRACT TRUNCATED AT 250 WORDS)
Overactivation of the renin-angiotensin system is one of the most important risk factors for the development of hypertension. The use of the crude extracts and/or active compounds, such as anthocyanins and quercetin, of herbal plants that have antihypertensive effects is beneficial for decreasing of blood pressure level. However, the molecular mechanisms by which anthocyanins (delphinidin and cyanin) and quercetin regulate the renin-angiotensin system are not completely understood. In this study, we demonstrate that delphinidin, cyanin, and quercetin interrupt the renin-angiotensin system signaling pathway by inhibiting the angiotensin-converting enzyme activity and decreasing its mRNA production. Furthermore, treatment with either delphinidin or cyanin significantly inhibited renin mRNA production. However, delphinidin, cyanin, and quercetin did not act as the angiotensin II type 1 receptor antagonist and did not play roles in the regulation of its internalization. The direct inhibition of components of the renin-angiotensin system advances our understanding of the antihypertensive effects of these compounds.
Insulin resistance is a condition in which cells are defective in response to the actions of insulin in tissue glucose uptake. Overstimulation of β-adrenergic receptors (βARs) leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, the mechanisms by which sustained βAR stimulation affects insulin resistance in the heart are incompletely understood. In this study, we demonstrate that sustained βAR stimulation resulted in the inhibition of insulin-induced glucose uptake, and a reduction of insulin induced glucose transporter (GLUT)4 expression that were mediated by the β2AR subtype in cardiomyocytes and heart tissue. Overstimulation of β2AR inhibited the insulin-induced translocation of GLUT4 to the plasma membrane of cardiomyocytes. Additionally, βAR mediated cardiac insulin resistance by reducing glucose uptake and GLUT4 expression via the cAMP-dependent and protein kinase A-dependent pathways. Treatment with β-blockers, including propranolol and metoprolol antagonized isoproterenol-mediated insulin resistance in the heart. The data in this present study confirm a critical role for protein kinase A in βAR-mediated insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.