The relationship between inflammation and proteolytic activation in pancreatitis is an unresolved issue in pancreatology. The purpose of this study was to define the influence of neutrophils on trypsinogen activation in severe AP. Pancreatitis was induced by infusion of taurocholate into the pancreatic duct in C57BL/6 mice. For neutrophil depletion, an anti-Gr-1 antibody was administered before pancreatitis induction. Administration of the anti-Gr-1 antibody reduced circulating neutrophils by 97%. Pancreatic TAP and serum amylase levels increased 2 h and 24 h after induction of pancreatitis. Neutrophil depletion reduced pancreatic TAP and serum amylase levels at 24 h but not at 2 h after pancreatitis induction. Pancreatic MPO and infiltration of neutrophils, as well as MIP-2 levels, were increased 24 h after taurocholate infusion. Two hours after taurocholate administration, no significant pancreatic infiltration of neutrophils was observed. Injection of the anti-Gr-1 antibody abolished MPO activity, neutrophil accumulation, and MIP-2 levels, as well as acinar cell necrosis, hemorrhage, and edema in the pancreas at 24 h. Moreover, taurocholate-provoked tissue damage and MPO activity in the lung were normalized by neutrophil depletion. Intravital fluorescence microscopy revealed a 97% reduction of leukocytes in the pancreatic microcirculation after administration of the anti-Gr-1 antibody. Our data demonstrate that initial trypsinogen activation is independent of neutrophils, whereas later activation is dependent on neutrophils in the pancreas. Neutrophils are critical in mediating pancreatic and lung tissue damage in severe AP.
Leucocyte infiltration is a rate-limiting step in the pathophysiology of acute pancreatitis (AP) although the adhesive mechanisms supporting leucocyte-endothelium interactions in the pancreas remain elusive. The aim of this study was to define the role of lymphocyte function antigen-1 (LFA-1) in regulating neutrophil-endothelium interactions and tissue damage in severe AP. EXPERIMENTAL APPROACHPancreatitis was induced by retrograde infusion of sodium taurocholate into the pancreatic duct in mice. LFA-1 gene-targeted mice and an antibody directed against LFA-1 were used to define the role of LFA-1. KEY RESULTSTaurocholate challenge caused a clear-cut increase in serum amylase, neutrophil infiltration, CXCL2 (macrophage inflammatory protein-2) formation, trypsinogen activation and tissue damage in the pancreas. Inhibition of LFA-1 function markedly reduced taurocholate-induced amylase levels, accumulation of neutrophils, production of CXC chemokines and tissue damage in the pancreas. Notably, intravital microscopy revealed that inhibition of LFA-1 abolished taurocholate-induced leucocyte adhesion in postcapillary venules of the pancreas. In addition, pulmonary infiltration of neutrophils was attenuated by inhibition of LFA-1 in mice challenged with taurocholate. However, interference with LFA-1 had no effect on taurocholate-induced activation of trypsinogen in the pancreas. CONCLUSIONS AND IMPLICATIONSOur novel data suggest that LFA-1 plays a key role in regulating neutrophil recruitment, CXCL2 formation and tissue injury in the pancreas. Moreover, these results suggest that LFA-1-mediated inflammation is a downstream component of trypsinogen activation in the pathophysiology of AP. Thus, we conclude that targeting LFA-1 may be a useful approach to protect against pathological inflammation in the pancreas.
Inhibition of P-selectin protected against pancreatic tissue injury in experimental pancreatitis. Targeting P-selectin may be an effective strategy to ameliorate inflammation in AP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.