T cells undergo metabolic reprogramming and multiple biological processes to satisfy their energetic and biosynthetic demands throughout their lifespan. Several of these metabolic pathways result in the generation of reactive oxygen species (ROS). The imbalance between ROS generation and scavenging could result in severe damage to the cells and potential cell death, ultimately leading to T cell-related diseases. Interestingly, ROS play an essential role in T cell immunity. Here, we introduce the important connectivity between T cell lifespan and the metabolic reprogramming among distinct T cell subsets. We also discuss the generation and sources of ROS production within T cell immunity as well as highlight recent research concerning the effects of ROS on T cell activities.
Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.
Nucleus accumbens-associated protein 1 (NAC1) is a transcription co-factor that has been shown to possess multiple roles in stem cell and cancer biology. However, little is known about its roles in regulation of the immune system. In the current study, we observed that expression of NAC1 impacted the survival of CD8+ T cells in vitro. NAC1−/− CD8+ T cells displayed lower metabolism, including reduced glycolysis and oxidative phosphorylation. In vivo, compared with wild-type (WT) mice, NAC1−/− mice produced a lower response to vaccinia virus (VACV) infection, and viral antigen (Ag)-specific CD8+ T cells decreased more slowly. Additionally, we observed that the NAC1−/− mice demonstrated a stronger memory formation of viral Ag-specific CD8+ T cells post-viral infection. Mechanically, we identified that compared with WT CD8+ T cells, the Interferon Regulatory Factor 4 (IRF4), a key transcription factor in T cell development, was highly expressed in NAC1−/− CD8+ T cells, insinuating that IRF4 could be a critical regulatory target of NAC1 in the memory formation of CD8+ T cells. Our results indicate that NAC1 restrains the memory formation of CD8+ T cells by modulating IRF4, and targeting NAC1 may be exploited as a new approach to boosting CD8+ T cell memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.