Turkey cellulitis, also known as clostridial dermatitis is a significant cause of morbidity, mortality, and carcass condemnation at slaughter resulting in considerable losses for turkey producers. Here, we assessed the potential role of Avian Pathogenic Escherichia coli (APEC) in a cellulitis outbreak on a turkey farm in Iowa. Birds from one farm with a history of cellulitis and one farm with no history of disease (for comparison) were followed from the age of 10 weeks (before the outbreak) to 18 weeks (just prior to slaughter). E. coli recovered from the litter, from skin lesions of birds with cellulitis, and from systemic lesions of birds submitted for necropsy, were assessed. A total of 333 isolates were analyzed and screened for virulence-associated genes, antimicrobial resistance genes including heavy metal resistance, adhesins, invasins, and protectins, iron acquisition systems and their phylogenetic group through multiplex PCR. In addition, PCR was used to serogroup the isolates, and pulsed field gel electrophoresis (PFGE) was used to analyze a subset of strains from the farm environment (litter) and birds at 17 and 18 weeks of age when the cellulitis infection appeared to peak. Overall, E. coli isolates recovered from cellulitis lesions and systemic infection were identified as APEC, while a lower prevalence of E. coli recovered from the litter met the criteria of APEC-like. Direct comparison of E. coli isolates from the litter, lesions, and systemic strains using PFGE failed to find identical clones across all three sources reflecting the diversity of strains present in the poultry environment causing disease. This study highlights the role of APEC in turkey cellulitis and should not be overlooked as a significant contributor to the disease in turkeys.
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a devastating disease of poultry that results in multi-million-dollar losses annually to the poultry industry. Disease syndromes associated with APEC includes colisepticemia, cellulitis, air sac disease, peritonitis, salpingitis, omphalitis, and osteomyelitis among others. A total of 61 APEC isolates collected during the Fall of 2018 (Aug–Dec) from submitted diagnostic cases of poultry diagnosed with colibacillosis were assessed for the presence of 44 virulence-associated genes, 24 antimicrobial resistance genes and 17 plasmid replicon types. Each isolate was also screened for its ability to form biofilm using the crystal violet assay and antimicrobial susceptibility to 14 antimicrobials using the NARMS panel. Overall, the prevalence of virulence genes ranged from 1.6% to >90% with almost all strains harboring genes that are associated with the ColV plasmid—the defining trait of the APEC pathotype. Overall, 58 strains were able to form biofilms and only three strains formed negligible biofilms. Forty isolates displayed resistance to antimicrobials of the NARMS panel ranging from one to nine agents. This study highlights that current APEC causing disease in poultry possess virulence and resistance traits and form biofilms which could potentially lead to challenges in colibacillosis control.
Avian pathogenic E. coli is the causative agent of extra-intestinal infections in birds known as colibacillosis, which can manifest as localized or systemic infections. The disease affects all stages of poultry production, resulting in economic losses that occur due to morbidity, carcass condemnation and increased mortality of the birds. APEC strains have a diverse virulence trait repertoire, which includes virulence factors involved in adherence to and invasion of the host cells, serum resistance factors, and toxins. However, the pathogenesis of APEC infections remains to be fully elucidated. The Type 6 secretion (T6SS) system has recently gained attention due to its role in the infection process and protection of bacteria from host defenses in human and animal pathogens. Previous work has shown that T6SS components are involved in the adherence to and invasion of host cells, as well as in the formation of biofilm, and intramacrophage bacterial replication. Here, we analyzed the frequency of T6SS genes hcp, impK, evpB, vasK and icmF in a collection of APEC strains and their potential role in virulence-associated phenotypes of APECO18. The T6SS genes were found to be significantly more prevalent in APEC than in fecal E. coli isolates from healthy birds. Expression of T6SS genes was analyzed in culture media and upon contact with host cells. Mutants were generated for hcp, impK, evpB, and icmF and characterized for their impact on virulence-associated phenotypes, including adherence to and invasion of host model cells, and resistance to predation by Dictyostelium discoideum. Deletion of the aforementioned genes did not significantly affect adherence and invasion capabilities of APECO18. Deletion of hcp reduced resistance of APECO18 to predation by D. discoideum, suggesting that T6SS is involved in the virulence of APECO18.
Colibacillosis caused by Avian Pathogenic Escherichia coli (APEC) is a significant cause of morbidity, mortality and carcass condemnation to the poultry industry worldwide resulting in significant economic losses. We assessed a multiplex PCR for classifying diagnostic APEC and characterized these isolates using gene profile analysis.48 E. coli isolates collected between August and October 2018 through the Poultry Disease Research Center (PDRC) Diagnostic Laboratory were analyzed. Isolates were screened using multiplex PCR targeting genes associated with APEC chromosomal and plasmid virulence. Isolates were assessed for relationship between gene profile and host tissue of origin. Overall, isolates met the criteria for definition as well-developed pathogens with more than 90 % of isolates positive for the genes iroN, ompTp and hlyF; 78 % were positive for aerJ and 67 % for iss. A significantly lower prevalence was observed for cvaC, etsB, ireA and papC (range 5–36 %). When overall gene prevalence was examined for tissue of isolation, we found that APEC from the ovary, bone marrow, pericardium and lung had higher average numbers of genes compared to isolates recovered from skin and yolk sac. Genes associated with the ColV virulence plasmid (iss, iroN, hlyF and ompTp) were detected in 43 of 48 isolates (89.5%) further confirming the ColV plasmid is the defining trait of the APEC subpathotype. The use of a multiplex panel to screen for APEC has shown good correlation with pathogenesis, and tissue source and correlates well with invasive strains. Path panel diagnostics is available through PDRC, providing significant value to APEC screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.